
Towards Software Development

Microtasks

Yan Chen

School of Information

University of Michigan, Ann Arbor

yanchenm@umich.edu

Steve Oney

School of Information

University of Michigan, Ann Arbor

soney@umich.edu

Walter S. Lasecki

Computer Science & Engineering

and School of Information

University of Michigan, Ann Arbor

wlasecki@umich.edu

Abstract
Software development is a large, complex task that is
di�cult to break down into simple pieces that can be
e�ciently integrated into a single codebase. Developers
often decompose programing tasks into classes, functions,
and other constructs based on their functionality.
However, solving programming tasks often requires
adequate contextual information and e�cient ways to
aggregate the responses. In this paper, we discuss ongoing
work on a system that helps developers easily (e.g.
informally saying it) generate well-defined programming
microtasks by enabling multimodal interactions. These
tasks are flexible, schedulable, and their solutions can be
e�ciently integrated into the larger codebase.

Capturing Developers’ Context
In prior studies, we have found that programming tasks
generated during the software development process
require significant added contextual information to be
understood [1]. Previous work also suggested that
creating tasks with enough context captured can decrease
the time spent on recovery from interruption [2, 3].
Ideally, recovery time should be reduced as much as
possible. This leads to our question: How can a system
automatically capture or generate task context that will
minimize developers’ e↵ort?



Automatically capturing task context will enable
developers to easily define tasks that either crowds or they
themselves can e�ciently complete in the future. While
developers have understanding that the system does not,
it is ine�cient for developers to spend significant time
creating the most recoverable tasks. Understanding the
trade o↵ between these two processes could better help us
create systems to facilitate development.

With su�cient context, either developers or crowds can
complete a task, which adds more possibilities in how we
allocate workforces. When a new task is created,
developers can continue their current task and let the
crowds help with the new task. This benefits overall
productivity and keeps developers’ workflows from being
interrupted. If developers choose to work on a task
themselves, they can quickly choose one that fits into
their available time (e.g., a task that is completable before
an upcoming meeting), and quickly rehydrate the task
setting and context. They can then build that piece and
move onto another task they have defined for themselves
when they are next available. This has the potential to
directly impact how developers define and complete large
tasks that require multiple threads of reasoning and
development, making projects more e�cient and enabling
more e�cient context-switching and task scheduling.

Additionally, enabling responses written in di↵erent ways
will support answers to di↵erent types of programming
tasks. Respondents can comment, explain, or edit the
code by their preferences just as how they interact with
Google Docs and StackOverflow. Developers could choose
to read the text responses and highlighted code for
explanation and contextual reference or simply allow the
responses merge to their codebases automatically without
reimplementing them. This can mitigate the e↵ort of

aggregating microtasks and balance di↵erent preference of
response formats that developers may have.

Ongoing Work
Our ongoing work explores how to build a system that
smooths the process of assigning, rehydrating, and
aggregating programming microtasks so that developers
can create tasks on the fly that will be addressed when
they (or a helper in the crowd) have su�cient time. The
system will allow developers to create small programming
tasks within their editors using natural language and
automatically-captured code context.

The framework that we will create will also help to
automate the microtasking process as it becomes possible
to hand o↵ either task creation or completion to
machines, making software development more e�cient.

Biography
Yan Chen is a 2nd year Ph.D student at the University of
Michigan School of Information (UMSI). He is currently
building intelligent systems for developers. In his research,
he explores ways to better support developers using
on-demand crowds. Steve Oney is an Assistant Professor
at the UMSI. Walter S. Lasecki is an Assistant Professor
of Computer Science & Engineering at Michigan.

References
[1] Y. Chen, S. Oney, and W. S. Lasecki. Towards

providing on-demand expert support for software
developers. In CHI, 2016.

[2] P. J. Guo and M. Seltzer. Burrito: Wrapping your lab
notebook in computational infrastructure. In TaPP,
2012.

[3] J. Teevan, D. J. Liebling, and W. S. Lasecki.
Selfsourcing personal tasks. In CHI’14, 2014.


	Abstract
	Capturing Developers' Context
	Ongoing Work
	Biography
	References

