

Improving Crowd-Supported GUI Testing
with Structural Guidance

Yan Chen, Maulishree Pandey, Jean Y. Song, Walter S. Lasecki, Steve Oney
University of Michigan
Ann Arbor, MI, USA

{yanchenm, maupande, jyskwon, wlasecki, soney}@umich.edu

ABSTRACT
Crowd testing is an emerging practice in Graphical User Inter-
face (GUI) testing, where developers recruit a large number of
crowd testers to test GUI features. It is often easier and faster
than a dedicated quality assurance team, and its output is more
realistic than that of automated testing. However, crowds of
testers working in parallel tend to focus on a small set of com-
monly used User Interface (UI) navigation paths, which can
lead to low test coverage and redundant effort. In this paper,
we introduce two techniques to increase crowd testers’ cov-
erage: interactive event-fow graphs and GUI-level guidance.
The interactive event-fow graphs track and aggregate every
tester’s interactions into a single directed graph that visualizes
the cases that have already been explored. Crowd testers can
interact with the graphs to fnd new navigation paths and in-
crease the coverage of the created tests. We also use the graphs
to augment the GUI (GUI-level guidance) to help testers avoid
only exploring common paths. Our evaluation with 30 crowd
testers on 11 different test pages shows that the techniques
can help testers avoid redundant effort while also increasing
untrained testers’ coverage by 55%. These techniques can help
us develop more robust software that works in more mission-
critical settings, not only by performing more thorough testing
with the same effort that has been put in before, but also by
integrating these techniques into different parts of the devel-
opment pipeline to make more reliable software in the early
development stage.

Author Keywords
GUI testing; Software testing; Crowdsourcing

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Interactive systems and tools; User studies;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for proft or commercial advantage and that copies bear
this notice and the full citation on the frst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specifc permission and/or a fee. Request
permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
Copyright is held by the author(s). Publication rights licensed to ACM.
ACM 978-1-4503-6708-0/20/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3313831.3376835

INTRODUCTION
Software testing is an important, yet often overlooked, part of
the software development lifecycle. In the case of GUI devel-
opment, testing helps developers fnd functional and usability
defects in a system’s front-end. This testing requires test cases
that consist of a sequence of input events (e.g., writing in the
input feld and then clicking a button), which we defne as nav-
igation paths, and the resulting output (e.g., a modal window
pops up) [4, 54], which we defne as GUI state. Prior work has
shown that GUI testing can be effective in fnding both front-
end and back-end defects because they refect usage scenarios
and often execute back-end code [8, 43]. However, due to the
multitude of possible user event sequences, it can be challeng-
ing to design a comprehensive set of tests even for simple user
scenarios (e.g., purchasing an item on an e-commerce site).

Traditionally, software testing was conducted by dedicated
quality assurance (QA) teams with formally trained testers.
Although these QA teams are reliable, the high cost and de-
layed responses made them hard to scale and non-fexible for
rapid update needs for the software industry today. Automated
testing could be one solution, but the inability to create re-
alistic user behavior test cases makes them hard to rely on
given the variations in software products Crowd testing is an
emerging practice that enables testing with more fexibility
and scalability than QA teams [15, 27, 48, 49, 50]. It involves
recruiting crowd workers (either untrained or trained) from
platforms like Mechanical Turk [2] or uTest [3] to perform GUI
tests. However, crowd testing often results in a high degree
of test case duplication [49], because crowd workers tend to
navigate the same common paths while working in parallel.
Prior work focused on analyzing workers’ responses to iden-
tify and remove duplicates [49], rather than preventing the
issue. This duplication of test cases can lead to lower test
coverage, making the testing process less effective or more
costly.

To address this duplication problem, our insight is to augment
GUI testing with visual cues that guide testers’ attention to un-
explored navigation paths. Specifcally, we propose interactive
event-fow graphs and GUI-level guidance (Fig. 1), to make
crowd testing more effective. These techniques give testers
a human-readable navigation path history graph that is situ-
ated on testers’ current GUI state. This draws on information
foraging theory [29, 40, 52], which suggests that providing

1

http://dx.doi.org/10.1145/3313831.3376835
mailto:permissions@acm.org
mailto:soney}@umich.edu
http://dx.doi.org/10.1145/3313831.3376835
mailto:permissions@acm.org
http:permitted.To
mailto:soney}@umich.edu
http://dx.doi.org/10.1145/3313831.3376835
mailto:permissions@acm.org
http:permitted.To
mailto:soney}@umich.edu

1

2

Figure 1. The interactive event-fow graph (1) shows testers’ traces in real time. Testers can go to any previously explored states by clicking the state
node. The graph also derives the GUI-level guidance (2) that adds a non-clickable CSS overlay on the previously explored DOM elements to prevent
duplicate activity. Currently, this GUI is at the “fltering” event, indicated by the event node with red color in the graph. The red arrows show the
overlays are consistent with the outgoing event-fows of the “fltering” event.

effective visual cues can lower users’ effort in fnding the de-
sired information. This tight coupling of testers’ navigation
path history (both their own and others’) to UI elements, in
combination with human-readable interactive graphs, is cen-
tral to our approach to reducing the redundancy of test cases
and encouraging new path discovery.

To validate their effectiveness in guiding testers, we instru-
mented 11 realistic GUIs with the interactive event-fow graphs
and GUI-level guidance, and conducted a between-subject ex-
periment involving 30 participants with different levels of
expertise. We measured their performance using GUI test cov-
erage metrics [33]. The 330 test scripts that were generated
suggest that testers, regardless of their prior expertise, can use
our techniques to signifcantly improve their performance in
event-interaction coverage by avoiding duplicates. Our tech-
niques shaped testers’ working strategy such that they would
not waste their effort on repeated work, but concentrate on
creating new test cases by making use of their prior experience
and seek new ways to “break the application.”

We make the following contributions in this paper:

• a new approach instantiated by two techniques, GUI-level
guidance and interactive event-fow graphs, which visually
guide workers using GUI underlying structures (e.g., DOM
tree) toward more effectively testing GUIs; and

• experimental results that show these techniques can help
testers fnd more event-transitions and avoid duplication.

BACKGROUND & RELATED WORK
GUI testing has become an important step in the software de-
velopment lifecycle because GUIs are the primary UI in the vast
majority of today’s commodity software [32, 39]. However,
creating GUI tests to cover the large number of possible user
event sequences is a signifcant challenge.

Automated Testing
Manual testing can be labor-intensive and expensive. For
instance, it is hard to expect developers to perform an in-
depth GUI test on every commit. Some companies employ
a dedicated tester team per product; however, it is hard to

2

quickly scale the number of testers up or down in response
to changes in demand (e.g., to continuously test a new exper-
imental branch of the product). To address the challenge of
covering a large state space, prior work has developed auto-
mated testing techniques to generate [7, 39, 47] and execute
test cases [14, 55] at scale. Despite these techniques, empirical
research [18, 41] has shown that companies still rely on man-
ual testing because test execution is not a simple mechanical
task but a creative and experience-based process. A survey
of software developers showed that 94% of the 115 respon-
dents agreed that manual testing will never be replaced by
automated testing [41]. However, these techniques require
tedious confguration, created test cases can easily break due
to even minor changes in the GUI [15], and generated event
sequences are often not representative of user event sequences
in the real world, resulting in low coverage [28].

Crowdsourcing GUI Testing
Crowd testing is an emerging trend in GUI testing [15, 27, 48,
49, 50], where GUI developers recruit testers from platforms
like Mechanical Turk [2], Baidu Crowd Test [6], or uTest [3].
Other prior work on crowd testing has found benefts (e.g., low
cost and ease of tester recruiting), but it has some drawbacks
as well. Most notably, because most crowd testing tools do
not share awareness of explored paths among testers, crowd
testing can produce many duplicates, leading to wasted effort
for both developers and testers [49, 53].

There are two primary categories of GUI testing: functional
testing and usability testing. Functional testing helps ensure
the GUI works according to specifcation, regardless of how
usable that specifcation is. Usability testing helps ensure users
are able to use the GUI effectively. Our techniques are designed
for functional testing, and thus we aim to create traces that
can put the GUI into as many states as possible in order to fnd
functionality bugs. ZIPT [13] has explored ways to improve
crowdsourced usability testing by collecting, aggregating, and
visualizing users’ interaction paths with mobile applications.
Thus, unlike our techniques, ZIPT does not prevent users from
creating duplicate test cases because understanding which
interaction paths are the most common is helpful for assessing
a GUI’s usability.

Prior work on collaborative crowdsourcing has introduced
techniques that make crowd workers aware of prior responses
to generate more diverse answers [9]. Legion [23] automat-
ically proposes a previously used label for actions in videos
to prevent crowd workers from always generating new ones
for each occurrence, which makes the labels highly consistent.
In the context of GUI testing, a common method is to remove
duplicates from the list of test cases by a post-hoc result anal-
ysis [49]. Other researchers have proposed incentive-based
approaches that reward testers who discover previously unseen
cases [5]. While these approaches help reduce duplicate tests,
the suboptimal effcacy of crowd testers remains because many
of them will produce test cases that are later removed as dupli-
cates. Our proposed techniques for improving testers’ effcacy
is inspired by the ExtraSensory Perception (ESP) game [46].
Similar to the game’s “taboo” mechanic, our techniques in-
dicate which actions have already been explored. However,

instead of asking participants to guess existing answers, we
ask them to fnd cases that are different from the existing ones.

Inferring Task Models from Interaction Traces
Prior work has used crowd testing to generate task models,
which are then fed into automated test generators. For exam-
ple, SwiftHand [10] learns models of Android applications
and uses them to fnd unexplored states. MonkeyLab [25]
models user event interaction sequences on Android applica-
tions to generate new test cases. POLARIZ [28] simulates user
interaction patterns learned from users’ behavior on Android
apps, and then it applies this simulation to different appli-
cations. Rico [12] proposed a hybrid approach that records
crowd workers’ app traces frst and then continues the explo-
ration programmatically, reaching a wider state space in an
app. These approaches combine the advantages of humans
and machines, making test cases realistic and testing tasks
scalable. However, the issue of test duplication remains.

Techniques for inferring interaction models from prior usage
data have also been proposed [8, 16, 36]. Brooks and Memon
([8]) inferred a probabilistic model of user behavior; Ermuth
and Pradel ([16]) inferred a deterministic model; and Fard et
al. ([36]) inferred a model per task. All of this prior work has
inferred task models from crowd workers’ and users’ natural
interaction traces. By contrast, our goal is to actively guide
crowd workers away from common interaction traces to fnd
paths that are less common.

Improving GUI Tester Effcacy
Micallef et al. [35] showed that they can improve the perfor-
mance of untrained GUI testers by giving them a summary of
common testing strategies derived from best practices [51].
Instead of providing testers with general testing tips, our in-
teractive event-fow graphs and GUI-level guidance techniques
give testers in situ guidance to lower the cognitive effort for
their decision-making. Other work, like MOOSE [11] and
COCOON [53], studied improving testers’ effcacy by optimiz-
ing the tester hiring process. Such techniques could be used in
combination with those proposed in this paper, but improving
the hiring process is outside of the scope of this paper.

DESIGN GOALS AND RATIONALE
Designing a UI that facilitates effective GUI testing is chal-
lenging because testers could take many navigation paths to
complete a task (e.g., there are many possible event sequences
that one could take to purchase an item on an e-commerce site)
and some of the paths might have overlapping sub-paths. The
convoluted navigation paths can make it diffcult for testers to
remember where they already navigated and where else they
could navigate to increase the testing coverage.

Reducing Overlapping Navigation Paths
To reduce overlapping and redundant sub-paths in testing, we
implemented GUI-level guidance that presents previous work-
ers’ navigation paths to new workers by augmenting the UIs
with non-clickable CSS overlays (Fig. 1 2). We designed this
GUI-level guidance by conducting a series of small studies,
comparing two different approaches of presenting GUI navi-
gation paths: (1) UI overlays that block out regions in the UI

3

Figure 2. An Event-Flow Graph (EFG) for the “delivery preference”
page of an e-commerce website. The left column shows three different
states of the GUI, differing based on which tab on the top of the page is
clicked. The right column shows the event-fow graph of the GUI where
the top three nodes of the graph each represent different tabs on the
left column. With the event-fow graph, testers can easily navigate and
discover feasible paths, eventually increasing the testing coverage.

that have previously been explored, and (2) textual logs that
show past user events. We chose to compare these presen-
tations because prior work showed that presenting previous
people’s responses can effectively improve others’ task per-
formance [19, 29, 46]. However, unlike their approaches, we
focused on guiding testers to avoid explored GUI regions, thus
including information about how often users use particular UI
features (such as a heatmap) was unnecessary and potentially
misleading.

We compared two presentations with a baseline, which was
not presenting any guidance to the workers. We measured
the path duplication rate after testers used the two presenta-
tions and found that testers could successfully avoid repeating
previously explored navigation paths with the UI overlay guid-
ance, but they could not in either the baseline or the textual
log condition. Participants reported that there were mainly
two advantages of having the overlays on the UI. First, over-
lays required less context switch to look at which paths were
already explored. Second, overlays required less navigation ef-
fort when making the decisions on which path to explore next.
Therefore, we decided to use the non-clickable CSS overlays
as our GUI-level guidance.

Increasing Test Coverage
To encourage testers to effciently increase the test coverage,
the UI should enable them to easily navigate among previously
explored events to fnd a broader range of test cases. Prior work
has suggested two models to represent previously explored
interactions: Finite State Machines (FSMs) [34, 47], and Event-
Flow Graphs (EFGs) [39]. However, a study [47] suggested that

these approaches can be overwhelming for testers to evaluate
because the number of possible permutations of low-level
events and targets are too large to test, especially when the
context of the path is missing. So developers typically rely on
manually crafting a small number of event sequences, which
is not scalable.

Inspired by prior work that developed an abstract GUI
model [31], we design an interactive, abstract EFG as part
of our guidance techniques, in which testers can easily under-
stand and navigate the graphs by a simple click interaction on a
node (Fig. 1 1). With our interactive event-fow graphs, click-
ing an event node lets the GUI return to the event-associated
state. For example, clicking the node of “fltering” event in
Fig. 1 2 will set the GUI to the results page of the flter button
being clicked. The active (testers’ current) event of the EFG
also updates to the “fltering” event. One can use many kinds
of techniques to decide which flter buttons should be clicked,
such as applying the values from the last event that occurred on
the GUIs. Because we focus on increasing testers’ event-fow
coverage, we used a set of predefned values for each state.

APPROACH AND IMPLEMENTATION
In this section, we introduce the implementation of the two
novel crowdsourcing techniques for effcient GUI testing: GUI-
level guidance and interactive event-fow graphs.

The GUI-level guidance
To help avoid duplicate test cases, we propose using GUI-level
guidance that displays information about existing test cases
by augmenting the GUI (Fig. 1 2). We implemented this
guidance by adding a gray CSS overlay on top of the explored
elements. The overlay can prevent testers from interacting with
elements that lead to previously explored interaction paths,
encouraging them to fnd other widgets to explore, and helps
generate more effective outputs.

The interactive event-fow graphs
To visualize the explored interaction paths, we built a human-
readable Event-Flow Graph (EFG) to represent the event-fow
of the Application Under Test (AUT) by incorporating previous
testers’ traces. Figure 2 shows an example of an EFG for a
UI for specifying a user’s delivery preferences on a represen-
tative e-commerce website. At the top are three nodes (or
events), Pick Up, Delivery, and Contact Info, which represent
the delivery option tabs. They are clickable navigation “but-
tons” that are available when the delivery preference page is
frst invoked. The edges represent the event fows (or event-
interactions) from node to node. To measure the effectiveness
of GUI testing using EFGs, prior work developed coverage cri-
teria that calculate the number of event-interactions within
all the generated event sequences [33]. The number of event-
interactions for a single event, such as “Pick Up” in Fig. 2, is
calculated by counting all the outgoing event-fows (arrows)
of this node (i.e., “Pick Up” → “Between Input1,” “Pick Up”
→ “Between Input2,” “Pick Up” → “Delivery,” and “Pick
Up” → “Contact Info”). We use the same criteria to measure
the effectiveness of our proposed techniques.

4

http:Info�).We
http:Info�).We

As discussed in the related work section, the number of pos-
sible event sequences for a GUI can be enormous, making
the corresponding EFG diffcult for testers to understand and
interact with. To address this problem, our techniques allow
end-user developers to abstract the meta-level events (e.g.,
click the “Today” checkbox) to a user-intent-level (e.g., pick a
delivery day). We did this by instrumenting the parent nodes
in the DOM tree instead of an individual leaf node (i.e., nodes
without any children). This provides crowd testers an easy
way to read navigation history in the EFG.

To track testers’ traces, we implemented a tracker on the client
side. We did this by creating an empty EFG object, developed
based on the Dagre libraries 1, so that events and event-fows
can be added to it in event handlers JavaScript function on
the client side (Fig 1. 2). To tailor the user event displayed
on each node to a human-readable level, we presented the
corresponding user intents. These user intents come from
the unique attribute values of the parent nodes that end-user
developers are assigned to, so that when testers are interacting
with their children nodes they are automatically be triggered.

The event name displayed on each node could come from any
attributes of the corresponding parent node (e.g., id=‘delivery_-
day_checkboxes’). To decide whether to add a new event-fow
to the EFG or to fre an existing one, the tracker compares the
incoming event to all the existing event-fows of the current
active event and makes the decisions. Because the interactive
event-fow graphs run in real time while testers perform their
tasks, we used a computationally inexpensive method. Our
evaluation shows that this approach is effective. Note that
exploring advanced trace tracking techniques (e.g., quadtree
decomposition [42] or element association analysis [12]) is
beyond the scope of this work on studying effective tester
guidance.

Implementation
Our technique is a JavaScript library that was developed based
on the Dagre libraries. To instrument a standard web applica-
tion, one can create a tracker instance (Fig. 3, variable name
currentActiveFSM), and listen to events to the desired par-
ent nodes by adding unique ID values to them. The output is
an array of JSON objects, which we saved using Firebase.

EVALUATION OF GUIDANCE TECHNIQUES
To evaluate our crowd-powered GUI testing guidance tech-
niques (GUI-level guidance and interactive event-fow graphs),
we conducted an experiment in which crowd testers were given
11 GUI testing tasks and were asked to perform them on three
web GUIs that were instrumented with both techniques. To
make the EFG human-readable, we instrumented their DOM
trees so that each event in the EFG denoted one type of user
event (e.g., fltering) that was associated with a group of DOM
elements (e.g., all “flter” buttons), and each transition denoted
the immediate transition action from one event to another. Al-
though this design is different from the standard approach, we
hypothesized that our approach can effectively help testers
easily navigate through previous traces by providing a read-
able and scalable EFG. We tested this both individually and
1https://github.com/dagrejs

// Get the DIV element to insert the trace tracking tool
const displayDiv = document.getElementById('displayDiv')

// Initialize a trace tracker JSON variable
let currentActiveFSM = t2sm.FSM.fromJSON(JSON.parse(str0));

// Initialize the display of the trace tracker
const display = new t2sm.StateMachineDisplay(currentActiveFSM,
displayDiv, myDisplaySetting);

// Display style setting for states and transitions
function myDisplaySetting(fod) {
 // Set state box style

 // Set transition box style
}

Figure 3. Example of Javascript code that creates a tracker instance to
instrument a GUI.

collectively (i.e., building on top of an existing EFG generated
by others) performing the tasks on a web GUI prototype. We
refer the integration of these two techniques as the “guidance”
throughout this section. In this section, we frst talk about our
study setting. Then, we discuss our study results and analysis.

GUI Testing Tasks
We wanted to ensure our study’s GUIs and tasks were realistic.
We also wanted to test the type of websites that are commonly
used, so we chose three common categories: travel agent,
blog, and e-commerce (see Fig. 4 for screenshots of all the
GUIs). Because our techniques require instrumenting the GUI
code, we also needed to have access and permission to modify
the source code for the GUIs we used. We synthesized the
necessary data (e.g., product information) to make it more
realistic (further validation is in the discussion).

To get realistic tasks for testing, we recruited an independent
professional tester with fve years of experience of web ap-
plication quality assurance from Upwork. We gave the tester
the three aforementioned types of websites and asked them to
design and make GUI testing tasks. We eliminated tasks that
required checking the content or sanity checks (e.g., “Review
the content of the article XXX”) because they often require
domain knowledge that crowd testers might not have. Addi-
tionally, because our techniques focus on event sequences, we
excluded the tasks regarding cross-device compatibility (e.g.,
“Check cross-browser compatibility”). We ended up with the
following 11 tasks, which we used for the fnal evaluation:

• Travel Agent
– Task 1: Find an Asian restaurant and reserve the place
– Task 2: Find an Indian buffet that allows dogs and

accepts Visa
– Task 3: Write, edit, and rate a review

• Blog
– Task 4: Find an article about culture and bookmark it
– Task 5: Read an article and bookmark it
– Task 6: Write/edit/bookmark an article
– Task 7: Discuss the article with its author

• E-commerce

5

https://github.com/dagrejs
http:compatibility�).We
http:tasks.We
http:prototype.We
http:libraries.To
http:day_checkboxes�).To
http:compatibility�).We
http:tasks.We
http:prototype.We
http:libraries.To
http:day_checkboxes�).To

Figure 4. Screenshots from our three GUI prototypes. From left to right columns: travel agent, blog, e-commerce

6

– Task 8: Find a toy and add it to the shopping cart
– Task 9: Change my shopping list and make the total

price lower than $5 USD

– Task 10: Add/edit/rate a review
– Task 11: Verify all the delivery methods

Although prior work has used artifcial defects in their system
under testing [35], all of the 11 GUIs we used were bug-free
to avoid potential biases. This also allowed us to evaluate the
effectiveness of the tool rather than the testers’ expertise.

Participants
We recruited 30 participants: 18 untrained testers from MTurk
and 12 trained testers from Upwork. The 18 MTurk partic-
ipants were crowd testers who had a minimum of 90% ac-
ceptance rate and fnished at least 500 Human Intelligence
Tasks (HITs). The 12 Upwork participants all had at least one
year of experience in manual GUI testing. MTurk participants
were compensated at $8.00 per hour, and Upwork participants
were compensated at $18.00 per hour. At the beginning of
each session, participants were asked to watch a short tutorial
video and familiarize themselves with the application. We
also conducted a follow-up survey among the trained testers
regarding their experiment experience.

Experimental Design
Our study had fve conditions, each with six testers. The
11 tasks described in the previous section were used in all
conditions. Our conditions permute combinations of untrained
(U) or trained (T) testers, and guidance (G) or the baseline
(B):

• CUB (untrained baseline): untrained testers / no guidance,

• CTB (trained baseline): trained testers / no guidance,

• CUG (untrained with guidance): untrained testers / guidance,

• CUG+ (untrained collaborative with guidance): untrained
testers collaborate with each other using guidance,

• CTG (trained with guidance): trained testers / guidance.

For CUB and CTB, we gave participants the task description,
the study goal (i.e., fnd all possible traces to accomplish the
tasks), and the three testing GUIs. At any point, they could go
back to the initial event to restart their navigation (Fig. 1. 1
“Go to the start!” green button) or move on if they thought
they had found all the traces. The same information and setup
was provided in CUG, CUG+, and CTG, but these groups had
the guidance enabled. To evaluate the guidance’s effective-
ness in supporting collaboration, testers in CUG+ were given
one of the CUG testers’ EFGs, which could have been already
fully covered, and they were instructed to build on top of it
to accomplish the same navigation tasks. All the EFGs gener-
ated in CUG were paired with a tester in CUG+. In total, the
study yielded 330 (6 workers per condition × 11 tasks × 5
conditions) data points (sets of GUI-level activities for a task).

34.7962.23 53.8378.9
0

25

50

75

TB TG UB UG

Av
g.

 T
ra

ns
iti

on
 R

ec
al

l (
%

)

Figure 5. Average transition coverage for four single worker conditions
based on these combinations: trained baseline (TB), trained with guid-
ance (TG), untrained baseline (UB), untrained with guidance (UG). A
higher transition coverage is better.

Coverage Metrics
GUI testing requires its own set of metrics to evaluate the
effectiveness of a test. This is because GUIs are event-driven—
their behavior is defned by how they react to user and system
events. These event callbacks often reference and modify a
shared state. As a result many bugs occur when callbacks
make invalid assumptions about the application state, often
because callbacks were executed in an order the developer
did not anticipate [37]. Traditional code coverage metrics,
which measure how much of the code was executed, have been
found to be poor metrics for evaluating the effectiveness GUI
tests [30, 33]. Code coverage measures whether a given piece
of code was executed whereas GUI tests should focus on how
many feasible states a piece of code was executed in. In other
words, we consider state coverage to be more important than
code coverage.

It is infeasible to determine the precise state coverage of
GUI tests because most realistic GUIs have too many possible
states. Instead, prior work has proposed metrics to approx-
imate state coverage. One such metric is event-interaction
coverage, which examines how many permutations of input
events have been tested [33]. We adopted this metric to evalu-
ate the tests’ effectiveness by measuring their coverage relative
to the “ground truth,” the EFG that our researchers manually
crafted.

Performance Metrics
For each task, we measured the event-interaction coverage, rep-
etition, and transition discovery time by the following means:

• Event-interaction coverage: (number of discovered event-
interactions) / (number of all possible event-interactions),

• Repetition: number of fred event-interactions (or number
of discovered unique event-interactions), and

7

http:testerinCUG+.In

• Transition discovery time: (average time spent per task) /
(number of discovered unique event-interactions).

These measurements indicate the overall effectiveness of the
guidance given the set of tasks on the testing GUI. Because the
name of an EFG node comes from its corresponding element ID,
we crafted the element ID in the GUI DOM tree to make nodes
easy to understand for the testers in CUG and CUG+. Although
the names of the EFG nodes are non-trivial to derive in real-
world sites (e.g., dynamic name convention), we believe that
using widget icons/images to indicate the transition actions
would also be effective for presenting traces.

Results
In this section, we discuss the guidance’s transition coverage
(percentage), transition discovery effciency (time), and rep-
etition (occurrence) across different conditions. To measure
statistical signifcance, we ran a pairwise two-tailed t-test and
Welch’s t-test (unequal variances).

The guidance eliminated test case duplication
Without the guidance, we found that untrained testers repeated
43.94% (standard deviation σ = 24.63%) of their own transi-
tions, and trained testers repeated 45.75% (σ = 11.22%) of
theirs. We also found that pair collaboration for both untrained
and trained testers generated duplicate transitions with 43.94%
(σ = 24.63%) and 45.75% (σ = 11.22%) occurrence rates on
average. In contrast, none of the testers using the guidance
(CUG, CUG+, CTG) generated duplicate transitions, indicating
that the guidance can robustly prevent testers from interact-
ing with previously explored elements. By further analyzing
testers’ GUI element-level interactions, we found that trained
testers (CTB) often spent their effort on testing widgets within
the same abstract state. For instance, when testing Task 6,
P3 from CTB generated more than fve traces that were com-
binations of elements in the “Editing Article” state and the
“Bookmarking Article” state. The only difference is the se-
lected article, which can be automatically chosen once the
event sequence is determined. This high duplication rate has
been reported by prior work [49].

The guidance improves trained & untrained testers’ coverage
Figure 5 shows the overall performance across different con-
ditions. We found that untrained testers using the guidance
(CUG) covered signifcantly more transitions than those with-
out (CUB), resulting in coverage of 34.79% (CUB) and 53.83%
(CUG) (p < 10e−7), respectively. Furthermore, trained testers
using the guidance (CTG) also covered signifcantly more tran-
sitions than those without (CTB), resulting in coverage of
62.23% (CTB) and 78.90% (CTG) (p < 10e−7), respectively.
These coverage improvements indicate that the guidance is
effective in guiding testers, regardless of their expertise, to dis-
cover more transitions than they could without the guidance.

Trained testers without guidance (CTB) still outperform un-

trained testers with guidance (CUG+)
Comparing the average transition coverage of untrained testers
with guidance (CUG) to that of trained testers with guidance
(CTG), the results showed statistical evidence that seasoned
testers can outperform untrained testers (53.83%, 78.90%,

Average time(s) Time(s) per transition

CUB 393.07 (163.90) 32.54 (18.86)

CUG 439.37 (469.37) 19.71 (20.40)

CUG+ 301.05 (189.96) 9.50 (5.71)

CTB 525.70 (286.60) 20.06 (8.92)

CTG 430.71 (402.86) 11.62 (8.63)
Table 1. The average time participants spent per condition, and the
time it took them to discover a new transition.

p < .005). It also makes sense, because a tool cannot suddenly
help untrained testers perform as well as trained ones.

The guidance improves trained testers’ discovery speed
We computed the average task completion time and the average
time it took a participant to discover a new transition for all
conditions (Table 1). Our results indicate that the guidance
has no statistical impact on untrained testers regarding both
time metrics (p > .058, p > 0.93, respectively). Similarly, we
did not fnd a statistical difference between the time trained
testers spent when using the integration and without using it to
complete the task (p > 0.42). However, the time that trained
testers took to discover a new transition is shorter when they
used the guidance (p < 0.0068), indicating that the guidance
makes the trained testers’ performance more effcient. We
suspect that this time reduction was only apparent with trained
testers because the EFG matched their mental model of test
creation and could serve as a memory aid. We believe that the
untrained testers’ benefts were less pronounced because they
were less familiar with how to strategically use EFGs.

The guidance helps testers collaborate
We simulated pair collaboration in CUB by calculating the
union sets of transitions generated by all pairs of testers

)). Compared to CUG+, we found that untrained (P(2,SCUB
testers using guidance (CUG+) could collaborate and improve
the coverage signifcantly (Welch’s t-test, p < .0001), with
average transition coverages being 36.16% and 71.39%. This
indicates that the guidance could support pair collaboration to
improve transition coverage. Additionally, it shows that un-
trained testers did not explore many of the new events without
guidance.

DISCUSSION
In summary, we found that the combination of the GUI-level
guidance and interactive event-fow graphs can effectively
guide both untrained and trained testers to signifcantly in-
crease their event-interaction coverage. Consistent with In-
formation Foraging Theory [40], this fnding suggests that
providing visual navigation cues could help guide people’s
attention and thus improve information access.

Testers’ experience with our techniques
Overall, testers found the guidance “quite helpful to fnd paths
and avoid duplicate actions” (P1) and “user friendly” (P4),
and felt that “all scheme [was] forming just right on your eyes”
(P5). One participant said “[the guidance] helped me to save
my time and explore the new links without clicking the already

8

http:theirs.We
http:conditions.To

100

75

50

25

0
0.00 25.00 50.00 75.00

0.00 25.00 50.00 75.00

100
75
50

25
0

125

CUG CUG+ CTG

CUG CUG+ CTG

Task progression in time (%)

(a)

Task progression in time (%)

(b)

Test Groups’ Effective Action Counts

Test Groups’ New Transition Discovery Counts

E
ffe

ct
iv

e
ac

tio
n

co
un

ts
D

is
co

ve
ry

 c
ou

nt
s

Figure 6. Testers’ interaction pattern with respect to task progression
in time. Chart (a) shows trained and untrained testers’ guidance graph
click counts. As time progressed, testers interacted with the guidance
graph more because it was harder to fnd a new transition discovery.
Chart (b) shows the number of new transition discovery counts, which
decrease as time progresses, implying the discovery becomes more chal-
lenging (thus more clicking happening in (a) as time progresses).

explored link” (P1). Testers also suggested a few ideas for
improving the guidance. P11 said that it would be nice to
enable a transition- or node-removal function, allowing testers
to better focus on expanding major paths. This makes sense,
given that the task scopes can be large enough to include a con-
siderable number of paths. In this case, presenting all explored
paths could complicate the interactive event-fow graph, mak-
ing it less useful in terms of fnding new transitions. Another
tester suggested having a trace log to “record all user doings
in log format” (P6). Some other testers did not immediately
realize that they could jump to previously discovered events
by clicking the nodes; thus, they wasted some time before
understanding this function.

The study materials were considered realistic
In our post hoc survey, all 12 trained testers thought the
11 tasks were “reasonable” (P1,2,3,5,11), “realistic” (P4,8),
“good example to analyze module relationships” (P6), and
“covered the basic of all the websites” (P7). Also, 10 of
them thought that the GUIs were “a normal website” (P1),
“not different from other testing jobs” (P6), and “realistic”
(P2,4,5,8,9,12). Two testers thought the websites were not
realistic because “some functions are not working properly”
(P10), and some have “bugs” (P11). But, P10 then pointed out
that “it is okay if you just need to check the path.”

The usage of the guidance increased throughout the task
To further evaluate how much the guidance helped testers
throughout the study, we measured the usage of the interactive
event-fow graphs using effective action, a user action where
its previous action is a click on the graph and the current ac-
tion is a new GUI state. We chose to measure effective action
because we believe that the clickable feature in an EFG could
potentially save testers’ effort of navigating back and forth
using the testing GUI by directly jumping to any discovered
states. We calculated the average number of effective actions
per worker for the three groups that used the guidance: CUG
(σ = 3.72), CUG+ (σ = 5.50), and CTG (σ = 14.56). Further-
more, we projected these numbers to the normalized task time,
shown in Fig. 6(a), and revealed that, for all the conditions, the
average number of usage had been increasing as testers per-
formed the tasks. Meanwhile, the number of new discovered
transitions had been decreasing as time progressed, as shown
in Fig. 6(b). One tester described their strategy as “make [the]
basic traces for a common user, then make the possible combi-
nations.” This indicates that guidance aids testers in fnding
less common transitions, which helps explain why testers in
these groups had higher coverage.

‘The guidance shaped my testing strategy.’
When unpacking individual testers’ traces, we found that the
interactive event-fow graphs shaped testers navigation pat-
terns. Using Fig. 2 as an example, we found that without
the guidance, testers had more single-thread navigation traces,
such as “Pick Up” → “Input1” → “To Pick Up, Delivery and
Contact Info,” whereas with the guidance testers explored mul-
tiple sub-paths to maximize the exhaustion, such as “Pick Up”
→ “Input1” → Go back to “Pick Up” using the graph → “In-
put2.” Testers were also able to do this without the interactive
event-fow graphs, but the cases were less frequent.

In our follow-up interview, we also found that all six trained
testers felt the guidance changed their testing strategies from
their prior approach and helped them better plan their moves at
given states. The six trained testers in the CTG condition used
the guidance as their extended memory to “avoid the same
trace” (P5), and “save my time and explore the new links”
(P1). This implies that guidance could aid individual testers’
memory for personal information management. Prior work has
found that untrained testers often conduct GUI testing without
strategies [35]. We imagine that in the future, we can present
these strategies to guide untrained testers to increase their
performance in coverage and scale the GUI testing process.

Scalability
Both techniques (interactive event-fow graphs and GUI-level
guidance) are computationally inexpensive and could thus
easily be scaled to real-world applications. Thus, the primary
type of scalability that we consider is the ability to scale to
complex EFGs. Because a graph is tied to a sequence of user
intents for completing a task, theoretically tasks that yield
dynamic user intents and require more steps to complete would
result in more visually complex graphs, which can be diffcult
for testers to make use of [44]. However, prior work has
empirically shown that only 14 unique interaction patterns
were needed to complete common user web tasks across 10

9

http:states.We
http:state.We
http:paths.In

of the most popular websites, including Google, Facebook,
YouTube, Wikipedia, Twitter and Amazon [22]. That work
also showed that this number only grew logarithmically with
respect to the number of new web tasks added. The 11 web
tasks we used in the study led to an average of 12.55 (σ = 5.00)
user intents per task, including duplication. This suggests that
our controlled experimental setting can closely represent the
interaction patterns performed with larger-scale applications.

USE CASES
To use our techniques in the life cycle of software develop-
ment, developers could embed a bug report UI on top of our
proposed techniques to enable testers to submit the defects
they encounter while testing. This is a similar approach from
prior work [38] and what existing crowd testing platforms do
in practice [45].

Automated testing tools like Selenium [1] rely on developers
to come up with test scenarios, design and write test cases,
and update them manually when a GUI changes, which can
be tedious. By combining our techniques with these testing
tools, developers can conduct (1) user behavior analysis by an-
alyzing tester behavior, (2) combinatorial testing by combing
different widgets across different user intents, and (3) integra-
tion testing by integrating each “unit” graph into the rest of the
application graph, as in Fig. 7. This is because the outcome of
our testers’ output consists of an array of all the testers’ actions
in chronological order, which includes user actions (e.g., click,
type), interacted DOM element ID, and other condition-related
information, and a user intent graph that summarizes these
testers’ actions. The dense information of our output enables
the design of diverse further use cases.

For example, a tester’s output test case can be used as a real
user behavior template that can guide combinatorial testing
for detecting defects by interactions of parameters (i.e., GUI
elements) across different user intents [20]. In our post survey,
a tester also acknowledged this approach: “[testing the] same
trace is not bad, because usually a lot of bugs appear when you
check same trace with little bit different combination of data.
I’m not always avoiding same traces. Just trying maximum
combinations as possible” (P6). Furthermore, developers can
run integration testing by integrating each “unit” graph into the
larger application-level graph (Fig. 7) and test them together
without recruiting more testers. This type of behavior-driven
integration testing is possible because it builds on the reason-
able assumption that integrating behavior-driven unit test cases
would still be realistic if combined with test cases’ shared GUI
components.

LIMITATIONS
Our techniques can be most benefcial for testing GUIs with
an object model (so that overlays can be drawn over specifc
elements) and a fnite state space (so that the EFG can be
rendered). This includes most web and mobile UIs. UIs with
non-fnite state spaces would need to collapse states together
to make the graph readable to testers. For example, for a video
playback widget where the user could scrub to an infnite
number of playback positions, its states might be reduced to
“start,” “middle,’ and “end” state.

A worker’s output The user behavior tree of a GUI

Figure 7. A small “unit” graph (left) can be integrated into larger
application-level graph (right) to test the entire graph without recruit-
ing additional testers.

FUTURE WORK
Our techniques rely on correctly identifying user intents (i.e.,
what is the user intent of each user action?) and Web structural
semantics (i.e., what elements share the same user intent?).
Prior work in the HCI community has explored methods to
tackle these two challenging tasks [21, 17, 24]. Future work
can (1) explore requesting the testers to annotate the possible
user intents per element group and then use the aggregated
annotations to instrument the GUIs, and (2) automate this pro-
cess by predicting UI semantics and grouping them in the
associated user intent [26]. Another future direction could be
exploring the scalability of the interactive event-fow graphs,
specifcally, effectively guiding testers for high test coverage.
While one could break down the large interactive event-fow
graphs into smaller portions, it would be interesting to dis-
cover how to display a subset of nodes and edges that are more
relevant to testers’ current GUI state.

CONCLUSION
This paper proposes two new simple but effective GUI crowd
testing techniques, interactive event-fow graphs and GUI-level
guidance, to make the process more effcient. The interactive
event-fow graphs track and aggregates testers’ GUI actions in a
directed graph that summarizes the navigation paths that have
already been explored. This graph then provides GUI-level
guidance directly in the form of overlay on the GUI that testers
use, which helps them avoid creating duplicate test cases. Our
results show that the guidance of these two techniques can
effectively help both untrained and trained testers signifcantly
increase their test coverage.

ACKNOWLEDGMENTS
We thank Rebecca Krosnick and Stephanie O’Keefe for their
editing assistance, our anonymous reviewers for their helpful
suggestions on this work, and our study participants for their
time. This work was partially supported by Clinc, Inc.

REFERENCES
[1] 2019. Selenium browser automation. (2019).

https://www.seleniumhq.org/ Accessed: Sep, 2019.

[2] Amazon. 2018. Amazon Mechanical Turk.
https://www.mturk.com/. Accessed: Sep, 2019.

[3] Applause. 2019. UTest. https://www.utest.com/.
Accessed: Sep, 2019.

10

https://www.seleniumhq.org/
http:https://www.utest.com
http:https://www.mturk.com

[4] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders
Møller, and Frank Tip. 2011. A framework for
automated testing of javascript web applications. In
Proceedings of the 33rd International Conference on
Software Engineering. ACM, 571–580.

[5] Josh Attenberg, Panagiotis G Ipeirotis, and Foster J
Provost. 2011. Beat the Machine: Challenging Workers
to Find the Unknown Unknowns. Human Computation
11, 11 (2011), 2–7.

[6] Baidu. 2019. Baidu Crowd Test platform.
http://test.baidu.com/crowdtest/crowdhome/guide.
Accessed: Sep, 2019.

[7] Sebastian Bauersfeld and Tanja Vos. 2012. A
reinforcement learning approach to automated gui
robustness testing. In Fast abstracts of the 4th
symposium on search-based software engineering
(SSBSE 2012). 7–12.

[8] Penelope A Brooks and Atif M Memon. 2007.
Automated GUI testing guided by usage profles. In
Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering. ACM, 333–342.

[9] Lydia B Chilton, Greg Little, Darren Edge, Daniel S
Weld, and James A Landay. 2013. Cascade:
Crowdsourcing taxonomy creation. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1999–2008.

[10] Wontae Choi, George Necula, and Koushik Sen. 2013.
Guided gui testing of android apps with minimal restart
and approximate learning. In Acm Sigplan Notices,
Vol. 48. ACM, 623–640.

[11] Qiang Cui, Song Wang, Junjie Wang, Yuanzhe Hu, Qing
Wang, and Mingshu Li. 2017. Multi-objective crowd
worker selection in crowdsourced testing. In 29th
International Conference on Software Engineering and
Knowledge Engineering (SEKE). 218–223.

[12] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017a. Rico: A mobile app dataset
for building data-driven design applications. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology. ACM,
845–854.

[13] Biplab Deka, Zifeng Huang, Chad Franzen, Jeffrey
Nichols, Yang Li, and Ranjitha Kumar. 2017b. ZIPT:
Zero-Integration Performance Testing of Mobile App
Designs. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology.
ACM, 727–736.

[14] Morgan Dixon and James Fogarty. 2010. Prefab:
implementing advanced behaviors using pixel-based
reverse engineering of interface structure. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1525–1534.

[15] Eelco Dolstra, Raynor Vliegendhart, and Johan
Pouwelse. 2013. Crowdsourcing gui tests. In Software
Testing, Verifcation and Validation (ICST), 2013 IEEE
Sixth International Conference on. IEEE, 332–341.

[16] Markus Ermuth and Michael Pradel. 2016. Monkey see,
monkey do: effective generation of GUI tests with
inferred macro events. In Proceedings of the 25th
International Symposium on Software Testing and
Analysis. ACM, 82–93.

[17] Forrest Huang, John F Canny, and Jeffrey Nichols. 2019.
Swire: Sketch-based User Interface Retrieval. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. ACM, 104.

[18] Juha Itkonen and Mika V Mäntylä. 2014. Are test cases
needed? Replicated comparison between exploratory
and test-case-based software testing. Empirical Software
Engineering 19, 2 (2014), 303–342.

[19] Sean Kross and Philip J Guo. 2018. Students, systems,
and interactions: synthesizing the frst four years of
learning@ scale and charting the future. In Proceedings
of the Fifth Annual ACM Conference on Learning at
Scale. ACM, 2.

[20] Rick Kuhn, Yu Lei, and Raghu Kacker. 2008. Practical
combinatorial testing: Beyond pairwise. It Professional
10, 3 (2008), 19–23.

[21] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres,
Maxine Lim, Salman Ahmad, Scott R Klemmer, and
Jerry O Talton. 2013. Webzeitgeist: design mining the
web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM,
3083–3092.

[22] Walter Lasecki, Tessa Lau, Grant He, and Jeffrey
Bigham. 2012. Crowd-based recognition of web
interaction patterns. In Adjunct proceedings of the 25th
annual ACM symposium on User interface software and
technology. ACM, 99–100.

[23] Walter S Lasecki, Rachel Wesley, Jeffrey Nichols,
Anand Kulkarni, James F Allen, and Jeffrey P Bigham.
2013. Chorus: a crowd-powered conversational assistant.
In Proceedings of the 26th annual ACM symposium on
User interface software and technology. ACM, 151–162.

[24] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li,
Xiaoyi Zhang, Wenze Shi, Wanling Ding, Tom M
Mitchell, and Brad A Myers. 2018. APPINITE: A
Multi-Modal Interface for Specifying Data Descriptions
in Programming by Demonstration Using Natural
Language Instructions. In 2018 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 105–114.

[25] Mario Linares-Vásquez, Martin White, Carlos
Bernal-Cárdenas, Kevin Moran, and Denys Poshyvanyk.
2015. Mining android app usages for generating
actionable gui-based execution scenarios. In Mining
Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on. IEEE, 111–122.

11

http:applications.In
http://test.baidu.com/crowdtest/crowdhome/guide

[26] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer,
Radomir Mech, and Ranjitha Kumar. 2018. Learning
design semantics for mobile apps. In The 31st Annual
ACM Symposium on User Interface Software and
Technology. ACM, 569–579.

[27] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. 2015.
A survey of the use of crowdsourcing in software
engineering. Rn 15, 01 (2015).

[28] Ke Mao, Mark Harman, and Yue Jia. 2017. Crowd
intelligence enhances automated mobile testing. In
Automated Software Engineering (ASE), 2017 32nd
IEEE/ACM International Conference on. IEEE, 16–26.

[29] Justin Matejka, Tovi Grossman, and George Fitzmaurice.
2013. Patina: Dynamic heatmaps for visualizing
application usage. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 3227–3236.

[30] Atif M Memon. 2002. GUI testing: Pitfalls and process.
Computer 8 (2002), 87–88.

[31] Atif M Memon. 2007. An event-fow model of
GUI-based applications for testing. Software testing,
verifcation and reliability 17, 3 (2007), 137–157.

[32] Atif M Memon and Bao N Nguyen. 2010. Advances in
automated model-based system testing of software
applications with a GUI front-end. In Advances in
Computers. Vol. 80. Elsevier, 121–162.

[33] Atif M Memon, Mary Lou Soffa, and Martha E Pollack.
2001. Coverage criteria for GUI testing. ACM SIGSOFT
Software Engineering Notes 26, 5 (2001), 256–267.

[34] Yuan Miao and Xuebing Yang. 2010. An FSM based
GUI test automation model. In 2010 11th International
Conference on Control Automation Robotics & Vision.
IEEE, 120–126.

[35] Mark Micallef, Chris Porter, and Andrea Borg. 2016. Do
exploratory testers need formal training? an
investigation using hci techniques. In Software Testing,
Verifcation and Validation Workshops (ICSTW), 2016
IEEE Ninth International Conference on. IEEE,
305–314.

[36] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah.
2014. Leveraging existing tests in automated test
generation for web applications. In Proceedings of the
29th ACM/IEEE international conference on Automated
software engineering. ACM, 67–78.

[37] Brad A Myers. 1991. Separating application code from
toolkits: eliminating the spaghetti of call-backs. In UIST,
Vol. 91. Citeseer, 211–220.

[38] Michael Nebeling, Maximilian Speicher, Michael
Grossniklaus, and Moira C Norrie. 2012. Crowdsourced
web site evaluation with crowdstudy. In International
Conference on Web Engineering. Springer, 494–497.

[39] Bao N Nguyen, Bryan Robbins, Ishan Banerjee, and
Atif Memon. 2014. GUITAR: an innovative tool for
automated testing of GUI-driven software. Automated
software engineering 21, 1 (2014), 65–105.

[40] Peter Pirolli and Stuart Card. 1999. Information
foraging. Psychological review 106, 4 (1999), 643.

[41] Dudekula Mohammad Raf, Katam Reddy Kiran Moses,
Kai Petersen, and Mika V Mäntylä. 2012. Benefts and
limitations of automated software testing: Systematic
literature review and practitioner survey. In Proceedings
of the 7th International Workshop on Automation of
Software Test. IEEE Press, 36–42.

[42] Katharina Reinecke, Tom Yeh, Luke Miratrix, Rahmatri
Mardiko, Yuechen Zhao, Jenny Liu, and Krzysztof Z
Gajos. 2013. Predicting users’ frst impressions of
website aesthetics with a quantifcation of perceived
visual complexity and colorfulness. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2049–2058.

[43] Brian Robinson, Patrick Francis, and Fredrik Ekdahl.
2008. A defect-driven process for software quality
improvement. In Proceedings of the Second ACM-IEEE
international symposium on Empirical software
engineering and measurement. ACM, 333–335.

[44] Urko Rueda, Anna Esparcia-Alcázar, and Tanja EJ Vos.
2016. Visualization of automated test results obtained by
the TESTAR tool.. In CIbSE. 53–66.

[45] Inc. UserTesting. 2019. UserTesting.
https://www.usertesting.com/. Accessed: Sep, 2019.

[46] Luis Von Ahn and Laura Dabbish. 2004. Labeling
images with a computer game. In Proceedings of the
SIGCHI conference on Human factors in computing
systems. ACM, 319–326.

[47] Tanja EJ Vos, Peter M Kruse, Nelly Condori-Fernández,
Sebastian Bauersfeld, and Joachim Wegener. 2015.
Testar: Tool support for test automation at the user
interface level. International Journal of Information
System Modeling and Design (IJISMD) 6, 3 (2015),
46–83.

[48] Junjie Wang, Qiang Cui, Song Wang, and Qing Wang.
2017. Domain adaptation for test report classifcation in
crowdsourced testing. In Proceedings of the 39th
International Conference on Software Engineering:
Software Engineering in Practice Track. IEEE Press,
83–92.

[49] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies,
and Qing Wang. 2018. Cutting Away the Confusion
From Crowdtesting. arXiv preprint arXiv:1805.02763
(2018).

[50] Junjie Wang, Song Wang, Qiang Cui, and Qing Wang.
2016. Local-based active classifcation of test report to
assist crowdsourced testing. In Automated Software
Engineering (ASE), 2016 31st IEEE/ACM International
Conference on. IEEE, 190–201.

12

http:computergame.In
http:https://www.usertesting.com

[51] James A Whittaker. 2009. Exploratory software testing:
tips, tricks, tours, and techniques to guide test design.
Pearson Education.

[52] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala.
2007. Scented widgets: Improving navigation cues with
embedded visualizations. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007),
1129–1136.

[53] Miao Xie, Qing Wang, Guowei Yang, and Mingshu Li.
2017. Cocoon: Crowdsourced testing quality
maximization under context coverage constraint. In
Software Reliability Engineering (ISSRE), 2017 IEEE
28th International Symposium on. IEEE, 316–327.

[54] Qing Xie and Atif M Memon. 2007. Designing and
comparing automated test oracles for GUI-based
software applications. ACM Transactions on Software
Engineering and Methodology (TOSEM) 16, 1 (2007), 4.

[55] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller.
2009. Sikuli: using GUI screenshots for search and
automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology.
ACM, 183–192.

13

	Introduction
	Background & Related Work
	Automated Testing
	Crowdsourcing GUI Testing
	Inferring Task Models from Interaction Traces
	Improving GUI Tester Efficacy

	Design Goals and Rationale
	Reducing Overlapping Navigation Paths
	Increasing Test Coverage

	Approach and Implementation
	The GUI-level guidance
	The interactive event-flow graphs
	Implementation

	Evaluation of Guidance Techniques
	GUI Testing Tasks
	Participants
	Experimental Design
	Coverage Metrics
	Performance Metrics

	Results
	The guidance eliminated test case duplication
	The guidance improves trained & untrained testers' coverage
	Trained testers without guidance (CTB) still outperform untrained testers with guidance (CUG+)
	The guidance improves trained testers' discovery speed
	The guidance helps testers collaborate

	Discussion
	Testers' experience with our techniques
	The study materials were considered realistic
	The usage of the guidance increased throughout the task
	`The guidance shaped my testing strategy.'
	Scalability

	Use cases
	Limitations
	Future work
	Conclusion
	ACKNOWLEDGMENTS
	References

