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ABSTRACT 
Crowd testing is an emerging practice in Graphical User Inter-
face (GUI) testing, where developers recruit a large number of 
crowd testers to test GUI features. It is often easier and faster 
than a dedicated quality assurance team, and its output is more 
realistic than that of automated testing. However, crowds of 
testers working in parallel tend to focus on a small set of com-
monly used User Interface (UI) navigation paths, which can 
lead to low test coverage and redundant effort. In this paper, 
we introduce two techniques to increase crowd testers’ cov-
erage: interactive event-fow graphs and GUI-level guidance. 
The interactive event-fow graphs track and aggregate every 
tester’s interactions into a single directed graph that visualizes 
the cases that have already been explored. Crowd testers can 
interact with the graphs to fnd new navigation paths and in-
crease the coverage of the created tests. We also use the graphs 
to augment the GUI (GUI-level guidance) to help testers avoid 
only exploring common paths. Our evaluation with 30 crowd 
testers on 11 different test pages shows that the techniques 
can help testers avoid redundant effort while also increasing 
untrained testers’ coverage by 55%. These techniques can help 
us develop more robust software that works in more mission-
critical settings, not only by performing more thorough testing 
with the same effort that has been put in before, but also by 
integrating these techniques into different parts of the devel-
opment pipeline to make more reliable software in the early 
development stage. 
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INTRODUCTION 
Software testing is an important, yet often overlooked, part of 
the software development lifecycle. In the case of GUI devel-
opment, testing helps developers fnd functional and usability 
defects in a system’s front-end. This testing requires test cases 
that consist of a sequence of input events (e.g., writing in the 
input feld and then clicking a button), which we defne as nav-
igation paths, and the resulting output (e.g., a modal window 
pops up) [4, 54], which we defne as GUI state. Prior work has 
shown that GUI testing can be effective in fnding both front-
end and back-end defects because they refect usage scenarios 
and often execute back-end code [8, 43]. However, due to the 
multitude of possible user event sequences, it can be challeng-
ing to design a comprehensive set of tests even for simple user 
scenarios (e.g., purchasing an item on an e-commerce site). 

Traditionally, software testing was conducted by dedicated 
quality assurance (QA) teams with formally trained testers. 
Although these QA teams are reliable, the high cost and de-
layed responses made them hard to scale and non-fexible for 
rapid update needs for the software industry today. Automated 
testing could be one solution, but the inability to create re-
alistic user behavior test cases makes them hard to rely on 
given the variations in software products Crowd testing is an 
emerging practice that enables testing with more fexibility 
and scalability than QA teams [15, 27, 48, 49, 50]. It involves 
recruiting crowd workers (either untrained or trained) from 
platforms like Mechanical Turk [2] or uTest [3] to perform GUI 
tests. However, crowd testing often results in a high degree 
of test case duplication [49], because crowd workers tend to 
navigate the same common paths while working in parallel. 
Prior work focused on analyzing workers’ responses to iden-
tify and remove duplicates [49], rather than preventing the 
issue. This duplication of test cases can lead to lower test 
coverage, making the testing process less effective or more 
costly. 

To address this duplication problem, our insight is to augment 
GUI testing with visual cues that guide testers’ attention to un-
explored navigation paths. Specifcally, we propose interactive 
event-fow graphs and GUI-level guidance (Fig. 1), to make 
crowd testing more effective. These techniques give testers 
a human-readable navigation path history graph that is situ-
ated on testers’ current GUI state. This draws on information 
foraging theory [29, 40, 52], which suggests that providing 
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Figure 1. The interactive event-fow graph ( 1 ) shows testers’ traces in real time. Testers can go to any previously explored states by clicking the state 
node. The graph also derives the GUI-level guidance ( 2 ) that adds a non-clickable CSS overlay on the previously explored DOM elements to prevent 
duplicate activity. Currently, this GUI is at the “fltering” event, indicated by the event node with red color in the graph. The red arrows show the 
overlays are consistent with the outgoing event-fows of the “fltering” event. 

effective visual cues can lower users’ effort in fnding the de-
sired information. This tight coupling of testers’ navigation 
path history (both their own and others’) to UI elements, in 
combination with human-readable interactive graphs, is cen-
tral to our approach to reducing the redundancy of test cases 
and encouraging new path discovery. 

To validate their effectiveness in guiding testers, we instru-
mented 11 realistic GUIs with the interactive event-fow graphs 
and GUI-level guidance, and conducted a between-subject ex-
periment involving 30 participants with different levels of 
expertise. We measured their performance using GUI test cov-
erage metrics [33]. The 330 test scripts that were generated 
suggest that testers, regardless of their prior expertise, can use 
our techniques to signifcantly improve their performance in 
event-interaction coverage by avoiding duplicates. Our tech-
niques shaped testers’ working strategy such that they would 
not waste their effort on repeated work, but concentrate on 
creating new test cases by making use of their prior experience 
and seek new ways to “break the application.” 

We make the following contributions in this paper: 

• a new approach instantiated by two techniques, GUI-level 
guidance and interactive event-fow graphs, which visually 
guide workers using GUI underlying structures (e.g., DOM 
tree) toward more effectively testing GUIs; and 

• experimental results that show these techniques can help 
testers fnd more event-transitions and avoid duplication. 

BACKGROUND & RELATED WORK 
GUI testing has become an important step in the software de-
velopment lifecycle because GUIs are the primary UI in the vast 
majority of today’s commodity software [32, 39]. However, 
creating GUI tests to cover the large number of possible user 
event sequences is a signifcant challenge. 

Automated Testing 
Manual testing can be labor-intensive and expensive. For 
instance, it is hard to expect developers to perform an in-
depth GUI test on every commit. Some companies employ 
a dedicated tester team per product; however, it is hard to 
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quickly scale the number of testers up or down in response 
to changes in demand (e.g., to continuously test a new exper-
imental branch of the product). To address the challenge of 
covering a large state space, prior work has developed auto-
mated testing techniques to generate [7, 39, 47] and execute 
test cases [14, 55] at scale. Despite these techniques, empirical 
research [18, 41] has shown that companies still rely on man-
ual testing because test execution is not a simple mechanical 
task but a creative and experience-based process. A survey 
of software developers showed that 94% of the 115 respon-
dents agreed that manual testing will never be replaced by 
automated testing [41]. However, these techniques require 
tedious confguration, created test cases can easily break due 
to even minor changes in the GUI [15], and generated event 
sequences are often not representative of user event sequences 
in the real world, resulting in low coverage [28]. 

Crowdsourcing GUI Testing 
Crowd testing is an emerging trend in GUI testing [15, 27, 48, 
49, 50], where GUI developers recruit testers from platforms 
like Mechanical Turk [2], Baidu Crowd Test [6], or uTest [3]. 
Other prior work on crowd testing has found benefts (e.g., low 
cost and ease of tester recruiting), but it has some drawbacks 
as well. Most notably, because most crowd testing tools do 
not share awareness of explored paths among testers, crowd 
testing can produce many duplicates, leading to wasted effort 
for both developers and testers [49, 53]. 

There are two primary categories of GUI testing: functional 
testing and usability testing. Functional testing helps ensure 
the GUI works according to specifcation, regardless of how 
usable that specifcation is. Usability testing helps ensure users 
are able to use the GUI effectively. Our techniques are designed 
for functional testing, and thus we aim to create traces that 
can put the GUI into as many states as possible in order to fnd 
functionality bugs. ZIPT [13] has explored ways to improve 
crowdsourced usability testing by collecting, aggregating, and 
visualizing users’ interaction paths with mobile applications. 
Thus, unlike our techniques, ZIPT does not prevent users from 
creating duplicate test cases because understanding which 
interaction paths are the most common is helpful for assessing 
a GUI’s usability. 

Prior work on collaborative crowdsourcing has introduced 
techniques that make crowd workers aware of prior responses 
to generate more diverse answers [9]. Legion [23] automat-
ically proposes a previously used label for actions in videos 
to prevent crowd workers from always generating new ones 
for each occurrence, which makes the labels highly consistent. 
In the context of GUI testing, a common method is to remove 
duplicates from the list of test cases by a post-hoc result anal-
ysis [49]. Other researchers have proposed incentive-based 
approaches that reward testers who discover previously unseen 
cases [5]. While these approaches help reduce duplicate tests, 
the suboptimal effcacy of crowd testers remains because many 
of them will produce test cases that are later removed as dupli-
cates. Our proposed techniques for improving testers’ effcacy 
is inspired by the ExtraSensory Perception (ESP) game [46]. 
Similar to the game’s “taboo” mechanic, our techniques in-
dicate which actions have already been explored. However, 

instead of asking participants to guess existing answers, we 
ask them to fnd cases that are different from the existing ones. 

Inferring Task Models from Interaction Traces 
Prior work has used crowd testing to generate task models, 
which are then fed into automated test generators. For exam-
ple, SwiftHand [10] learns models of Android applications 
and uses them to fnd unexplored states. MonkeyLab [25] 
models user event interaction sequences on Android applica-
tions to generate new test cases. POLARIZ [28] simulates user 
interaction patterns learned from users’ behavior on Android 
apps, and then it applies this simulation to different appli-
cations. Rico [12] proposed a hybrid approach that records 
crowd workers’ app traces frst and then continues the explo-
ration programmatically, reaching a wider state space in an 
app. These approaches combine the advantages of humans 
and machines, making test cases realistic and testing tasks 
scalable. However, the issue of test duplication remains. 

Techniques for inferring interaction models from prior usage 
data have also been proposed [8, 16, 36]. Brooks and Memon 
([8]) inferred a probabilistic model of user behavior; Ermuth 
and Pradel ([16]) inferred a deterministic model; and Fard et 
al. ([36]) inferred a model per task. All of this prior work has 
inferred task models from crowd workers’ and users’ natural 
interaction traces. By contrast, our goal is to actively guide 
crowd workers away from common interaction traces to fnd 
paths that are less common. 

Improving GUI Tester Effcacy 
Micallef et al. [35] showed that they can improve the perfor-
mance of untrained GUI testers by giving them a summary of 
common testing strategies derived from best practices [51]. 
Instead of providing testers with general testing tips, our in-
teractive event-fow graphs and GUI-level guidance techniques 
give testers in situ guidance to lower the cognitive effort for 
their decision-making. Other work, like MOOSE [11] and 
COCOON [53], studied improving testers’ effcacy by optimiz-
ing the tester hiring process. Such techniques could be used in 
combination with those proposed in this paper, but improving 
the hiring process is outside of the scope of this paper. 

DESIGN GOALS AND RATIONALE 
Designing a UI that facilitates effective GUI testing is chal-
lenging because testers could take many navigation paths to 
complete a task (e.g., there are many possible event sequences 
that one could take to purchase an item on an e-commerce site) 
and some of the paths might have overlapping sub-paths. The 
convoluted navigation paths can make it diffcult for testers to 
remember where they already navigated and where else they 
could navigate to increase the testing coverage. 

Reducing Overlapping Navigation Paths 
To reduce overlapping and redundant sub-paths in testing, we 
implemented GUI-level guidance that presents previous work-
ers’ navigation paths to new workers by augmenting the UIs 
with non-clickable CSS overlays (Fig. 1 2 ). We designed this 
GUI-level guidance by conducting a series of small studies, 
comparing two different approaches of presenting GUI navi-
gation paths: (1) UI overlays that block out regions in the UI 
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Figure 2. An Event-Flow Graph (EFG) for the “delivery preference” 
page of an e-commerce website. The left column shows three different 
states of the GUI, differing based on which tab on the top of the page is 
clicked. The right column shows the event-fow graph of the GUI where 
the top three nodes of the graph each represent different tabs on the 
left column. With the event-fow graph, testers can easily navigate and 
discover feasible paths, eventually increasing the testing coverage. 

that have previously been explored, and (2) textual logs that 
show past user events. We chose to compare these presen-
tations because prior work showed that presenting previous 
people’s responses can effectively improve others’ task per-
formance [19, 29, 46]. However, unlike their approaches, we 
focused on guiding testers to avoid explored GUI regions, thus 
including information about how often users use particular UI 
features (such as a heatmap) was unnecessary and potentially 
misleading. 

We compared two presentations with a baseline, which was 
not presenting any guidance to the workers. We measured 
the path duplication rate after testers used the two presenta-
tions and found that testers could successfully avoid repeating 
previously explored navigation paths with the UI overlay guid-
ance, but they could not in either the baseline or the textual 
log condition. Participants reported that there were mainly 
two advantages of having the overlays on the UI. First, over-
lays required less context switch to look at which paths were 
already explored. Second, overlays required less navigation ef-
fort when making the decisions on which path to explore next. 
Therefore, we decided to use the non-clickable CSS overlays 
as our GUI-level guidance. 

Increasing Test Coverage 
To encourage testers to effciently increase the test coverage, 
the UI should enable them to easily navigate among previously 
explored events to fnd a broader range of test cases. Prior work 
has suggested two models to represent previously explored 
interactions: Finite State Machines (FSMs) [34, 47], and Event-
Flow Graphs (EFGs) [39]. However, a study [47] suggested that 

these approaches can be overwhelming for testers to evaluate 
because the number of possible permutations of low-level 
events and targets are too large to test, especially when the 
context of the path is missing. So developers typically rely on 
manually crafting a small number of event sequences, which 
is not scalable. 

Inspired by prior work that developed an abstract GUI 
model [31], we design an interactive, abstract EFG as part 
of our guidance techniques, in which testers can easily under-
stand and navigate the graphs by a simple click interaction on a 
node (Fig. 1 1 ). With our interactive event-fow graphs, click-
ing an event node lets the GUI return to the event-associated 
state. For example, clicking the node of “fltering” event in 
Fig. 1 2 will set the GUI to the results page of the flter button 
being clicked. The active (testers’ current) event of the EFG 
also updates to the “fltering” event. One can use many kinds 
of techniques to decide which flter buttons should be clicked, 
such as applying the values from the last event that occurred on 
the GUIs. Because we focus on increasing testers’ event-fow 
coverage, we used a set of predefned values for each state. 

APPROACH AND IMPLEMENTATION 
In this section, we introduce the implementation of the two 
novel crowdsourcing techniques for effcient GUI testing: GUI-
level guidance and interactive event-fow graphs. 

The GUI-level guidance 
To help avoid duplicate test cases, we propose using GUI-level 
guidance that displays information about existing test cases 
by augmenting the GUI (Fig. 1 2 ). We implemented this 
guidance by adding a gray CSS overlay on top of the explored 
elements. The overlay can prevent testers from interacting with 
elements that lead to previously explored interaction paths, 
encouraging them to fnd other widgets to explore, and helps 
generate more effective outputs. 

The interactive event-fow graphs 
To visualize the explored interaction paths, we built a human-
readable Event-Flow Graph (EFG) to represent the event-fow 
of the Application Under Test (AUT) by incorporating previous 
testers’ traces. Figure 2 shows an example of an EFG for a 
UI for specifying a user’s delivery preferences on a represen-
tative e-commerce website. At the top are three nodes (or 
events), Pick Up, Delivery, and Contact Info, which represent 
the delivery option tabs. They are clickable navigation “but-
tons” that are available when the delivery preference page is 
frst invoked. The edges represent the event fows (or event-
interactions) from node to node. To measure the effectiveness 
of GUI testing using EFGs, prior work developed coverage cri-
teria that calculate the number of event-interactions within 
all the generated event sequences [33]. The number of event-
interactions for a single event, such as “Pick Up” in Fig. 2, is 
calculated by counting all the outgoing event-fows (arrows) 
of this node (i.e., “Pick Up” → “Between Input1,” “Pick Up” 
→ “Between Input2,” “Pick Up” → “Delivery,” and “Pick 
Up” → “Contact Info”). We use the same criteria to measure 
the effectiveness of our proposed techniques. 

4 

http:Info�).We
http:Info�).We


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As discussed in the related work section, the number of pos-
sible event sequences for a GUI can be enormous, making 
the corresponding EFG diffcult for testers to understand and 
interact with. To address this problem, our techniques allow 
end-user developers to abstract the meta-level events (e.g., 
click the “Today” checkbox) to a user-intent-level (e.g., pick a 
delivery day). We did this by instrumenting the parent nodes 
in the DOM tree instead of an individual leaf node (i.e., nodes 
without any children). This provides crowd testers an easy 
way to read navigation history in the EFG. 

To track testers’ traces, we implemented a tracker on the client 
side. We did this by creating an empty EFG object, developed 
based on the Dagre libraries 1, so that events and event-fows 
can be added to it in event handlers JavaScript function on 
the client side (Fig 1. 2 ). To tailor the user event displayed 
on each node to a human-readable level, we presented the 
corresponding user intents. These user intents come from 
the unique attribute values of the parent nodes that end-user 
developers are assigned to, so that when testers are interacting 
with their children nodes they are automatically be triggered. 

The event name displayed on each node could come from any 
attributes of the corresponding parent node (e.g., id=‘delivery_-
day_checkboxes’). To decide whether to add a new event-fow 
to the EFG or to fre an existing one, the tracker compares the 
incoming event to all the existing event-fows of the current 
active event and makes the decisions. Because the interactive 
event-fow graphs run in real time while testers perform their 
tasks, we used a computationally inexpensive method. Our 
evaluation shows that this approach is effective. Note that 
exploring advanced trace tracking techniques (e.g., quadtree 
decomposition [42] or element association analysis [12]) is 
beyond the scope of this work on studying effective tester 
guidance. 

Implementation 
Our technique is a JavaScript library that was developed based 
on the Dagre libraries. To instrument a standard web applica-
tion, one can create a tracker instance (Fig. 3, variable name 
currentActiveFSM ), and listen to events to the desired par-
ent nodes by adding unique ID values to them. The output is 
an array of JSON objects, which we saved using Firebase. 

EVALUATION OF GUIDANCE TECHNIQUES 
To evaluate our crowd-powered GUI testing guidance tech-
niques (GUI-level guidance and interactive event-fow graphs), 
we conducted an experiment in which crowd testers were given 
11 GUI testing tasks and were asked to perform them on three 
web GUIs that were instrumented with both techniques. To 
make the EFG human-readable, we instrumented their DOM 
trees so that each event in the EFG denoted one type of user 
event (e.g., fltering) that was associated with a group of DOM 
elements (e.g., all “flter” buttons), and each transition denoted 
the immediate transition action from one event to another. Al-
though this design is different from the standard approach, we 
hypothesized that our approach can effectively help testers 
easily navigate through previous traces by providing a read-
able and scalable EFG. We tested this both individually and 
1https://github.com/dagrejs 

// Get the DIV element to insert the trace tracking tool
const displayDiv = document.getElementById('displayDiv')

// Initialize a trace tracker JSON variable
let currentActiveFSM = t2sm.FSM.fromJSON(JSON.parse(str0));

// Initialize the display of the trace tracker
const display = new t2sm.StateMachineDisplay(currentActiveFSM, 
displayDiv, myDisplaySetting);

// Display style setting for states and transitions
function myDisplaySetting(fod) {
    // Set state box style

    // Set transition box style
}

Figure 3. Example of Javascript code that creates a tracker instance to 
instrument a GUI. 

collectively (i.e., building on top of an existing EFG generated 
by others) performing the tasks on a web GUI prototype. We 
refer the integration of these two techniques as the “guidance” 
throughout this section. In this section, we frst talk about our 
study setting. Then, we discuss our study results and analysis. 

GUI Testing Tasks 
We wanted to ensure our study’s GUIs and tasks were realistic. 
We also wanted to test the type of websites that are commonly 
used, so we chose three common categories: travel agent, 
blog, and e-commerce (see Fig. 4 for screenshots of all the 
GUIs). Because our techniques require instrumenting the GUI 
code, we also needed to have access and permission to modify 
the source code for the GUIs we used. We synthesized the 
necessary data (e.g., product information) to make it more 
realistic (further validation is in the discussion). 

To get realistic tasks for testing, we recruited an independent 
professional tester with fve years of experience of web ap-
plication quality assurance from Upwork. We gave the tester 
the three aforementioned types of websites and asked them to 
design and make GUI testing tasks. We eliminated tasks that 
required checking the content or sanity checks (e.g., “Review 
the content of the article XXX”) because they often require 
domain knowledge that crowd testers might not have. Addi-
tionally, because our techniques focus on event sequences, we 
excluded the tasks regarding cross-device compatibility (e.g., 
“Check cross-browser compatibility”). We ended up with the 
following 11 tasks, which we used for the fnal evaluation: 

• Travel Agent 
– Task 1: Find an Asian restaurant and reserve the place 
– Task 2: Find an Indian buffet that allows dogs and 

accepts Visa 
– Task 3: Write, edit, and rate a review 

• Blog 
– Task 4: Find an article about culture and bookmark it 
– Task 5: Read an article and bookmark it 
– Task 6: Write/edit/bookmark an article 
– Task 7: Discuss the article with its author 

• E-commerce 
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Figure 4. Screenshots from our three GUI prototypes. From left to right columns: travel agent, blog, e-commerce 
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– Task 8: Find a toy and add it to the shopping cart 
– Task 9: Change my shopping list and make the total 

price lower than $5 USD 

– Task 10: Add/edit/rate a review 
– Task 11: Verify all the delivery methods 

Although prior work has used artifcial defects in their system 
under testing [35], all of the 11 GUIs we used were bug-free 
to avoid potential biases. This also allowed us to evaluate the 
effectiveness of the tool rather than the testers’ expertise. 

Participants 
We recruited 30 participants: 18 untrained testers from MTurk 
and 12 trained testers from Upwork. The 18 MTurk partic-
ipants were crowd testers who had a minimum of 90% ac-
ceptance rate and fnished at least 500 Human Intelligence 
Tasks (HITs). The 12 Upwork participants all had at least one 
year of experience in manual GUI testing. MTurk participants 
were compensated at $8.00 per hour, and Upwork participants 
were compensated at $18.00 per hour. At the beginning of 
each session, participants were asked to watch a short tutorial 
video and familiarize themselves with the application. We 
also conducted a follow-up survey among the trained testers 
regarding their experiment experience. 

Experimental Design 
Our study had fve conditions, each with six testers. The 
11 tasks described in the previous section were used in all 
conditions. Our conditions permute combinations of untrained 
(U) or trained (T) testers, and guidance (G) or the baseline 
(B): 

• CUB (untrained baseline): untrained testers / no guidance, 

• CTB (trained baseline): trained testers / no guidance, 

• CUG (untrained with guidance): untrained testers / guidance, 

• CUG+ (untrained collaborative with guidance): untrained 
testers collaborate with each other using guidance, 

• CTG (trained with guidance): trained testers / guidance. 

For CUB and CTB, we gave participants the task description, 
the study goal (i.e., fnd all possible traces to accomplish the 
tasks), and the three testing GUIs. At any point, they could go 
back to the initial event to restart their navigation (Fig. 1. 1 
“Go to the start!” green button) or move on if they thought 
they had found all the traces. The same information and setup 
was provided in CUG, CUG+, and CTG, but these groups had 
the guidance enabled. To evaluate the guidance’s effective-
ness in supporting collaboration, testers in CUG+ were given 
one of the CUG testers’ EFGs, which could have been already 
fully covered, and they were instructed to build on top of it 
to accomplish the same navigation tasks. All the EFGs gener-
ated in CUG were paired with a tester in CUG+. In total, the 
study yielded 330 (6 workers per condition × 11 tasks × 5 
conditions) data points (sets of GUI-level activities for a task). 
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Figure 5. Average transition coverage for four single worker conditions 
based on these combinations: trained baseline (TB), trained with guid-
ance (TG), untrained baseline (UB), untrained with guidance (UG). A 
higher transition coverage is better. 

Coverage Metrics 
GUI testing requires its own set of metrics to evaluate the 
effectiveness of a test. This is because GUIs are event-driven— 
their behavior is defned by how they react to user and system 
events. These event callbacks often reference and modify a 
shared state. As a result many bugs occur when callbacks 
make invalid assumptions about the application state, often 
because callbacks were executed in an order the developer 
did not anticipate [37]. Traditional code coverage metrics, 
which measure how much of the code was executed, have been 
found to be poor metrics for evaluating the effectiveness GUI 
tests [30, 33]. Code coverage measures whether a given piece 
of code was executed whereas GUI tests should focus on how 
many feasible states a piece of code was executed in. In other 
words, we consider state coverage to be more important than 
code coverage. 

It is infeasible to determine the precise state coverage of 
GUI tests because most realistic GUIs have too many possible 
states. Instead, prior work has proposed metrics to approx-
imate state coverage. One such metric is event-interaction 
coverage, which examines how many permutations of input 
events have been tested [33]. We adopted this metric to evalu-
ate the tests’ effectiveness by measuring their coverage relative 
to the “ground truth,” the EFG that our researchers manually 
crafted. 

Performance Metrics 
For each task, we measured the event-interaction coverage, rep-
etition, and transition discovery time by the following means: 

• Event-interaction coverage: (number of discovered event-
interactions) / (number of all possible event-interactions), 

• Repetition: number of fred event-interactions (or number 
of discovered unique event-interactions), and 
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• Transition discovery time: (average time spent per task) / 
(number of discovered unique event-interactions). 

These measurements indicate the overall effectiveness of the 
guidance given the set of tasks on the testing GUI. Because the 
name of an EFG node comes from its corresponding element ID, 
we crafted the element ID in the GUI DOM tree to make nodes 
easy to understand for the testers in CUG and CUG+. Although 
the names of the EFG nodes are non-trivial to derive in real-
world sites (e.g., dynamic name convention), we believe that 
using widget icons/images to indicate the transition actions 
would also be effective for presenting traces. 

Results 
In this section, we discuss the guidance’s transition coverage 
(percentage), transition discovery effciency (time), and rep-
etition (occurrence) across different conditions. To measure 
statistical signifcance, we ran a pairwise two-tailed t-test and 
Welch’s t-test (unequal variances). 

The guidance eliminated test case duplication 
Without the guidance, we found that untrained testers repeated 
43.94% (standard deviation σ = 24.63%) of their own transi-
tions, and trained testers repeated 45.75% (σ = 11.22%) of 
theirs. We also found that pair collaboration for both untrained 
and trained testers generated duplicate transitions with 43.94% 
(σ = 24.63%) and 45.75% (σ = 11.22%) occurrence rates on 
average. In contrast, none of the testers using the guidance 
(CUG, CUG+, CTG) generated duplicate transitions, indicating 
that the guidance can robustly prevent testers from interact-
ing with previously explored elements. By further analyzing 
testers’ GUI element-level interactions, we found that trained 
testers (CTB) often spent their effort on testing widgets within 
the same abstract state. For instance, when testing Task 6, 
P3 from CTB generated more than fve traces that were com-
binations of elements in the “Editing Article” state and the 
“Bookmarking Article” state. The only difference is the se-
lected article, which can be automatically chosen once the 
event sequence is determined. This high duplication rate has 
been reported by prior work [49]. 

The guidance improves trained & untrained testers’ coverage 
Figure 5 shows the overall performance across different con-
ditions. We found that untrained testers using the guidance 
(CUG) covered signifcantly more transitions than those with-
out (CUB), resulting in coverage of 34.79% (CUB) and 53.83% 
(CUG) (p < 10e−7), respectively. Furthermore, trained testers 
using the guidance (CTG) also covered signifcantly more tran-
sitions than those without (CTB), resulting in coverage of 
62.23% (CTB) and 78.90% (CTG) (p < 10e−7), respectively. 
These coverage improvements indicate that the guidance is 
effective in guiding testers, regardless of their expertise, to dis-
cover more transitions than they could without the guidance. 

Trained testers without guidance (CTB) still outperform un-

trained testers with guidance (CUG+) 
Comparing the average transition coverage of untrained testers 
with guidance (CUG) to that of trained testers with guidance 
(CTG), the results showed statistical evidence that seasoned 
testers can outperform untrained testers (53.83%, 78.90%, 

Average time(s) Time(s) per transition 

CUB 393.07 (163.90) 32.54 (18.86) 

CUG 439.37 (469.37) 19.71 (20.40) 

CUG+ 301.05 (189.96) 9.50 (5.71) 

CTB 525.70 (286.60) 20.06 (8.92) 

CTG 430.71 (402.86) 11.62 (8.63) 
Table 1. The average time participants spent per condition, and the 
time it took them to discover a new transition. 

p < .005). It also makes sense, because a tool cannot suddenly 
help untrained testers perform as well as trained ones. 

The guidance improves trained testers’ discovery speed 
We computed the average task completion time and the average 
time it took a participant to discover a new transition for all 
conditions (Table 1). Our results indicate that the guidance 
has no statistical impact on untrained testers regarding both 
time metrics ( p > .058, p > 0.93, respectively). Similarly, we 
did not fnd a statistical difference between the time trained 
testers spent when using the integration and without using it to 
complete the task ( p > 0.42). However, the time that trained 
testers took to discover a new transition is shorter when they 
used the guidance ( p < 0.0068), indicating that the guidance 
makes the trained testers’ performance more effcient. We 
suspect that this time reduction was only apparent with trained 
testers because the EFG matched their mental model of test 
creation and could serve as a memory aid. We believe that the 
untrained testers’ benefts were less pronounced because they 
were less familiar with how to strategically use EFGs. 

The guidance helps testers collaborate 
We simulated pair collaboration in CUB by calculating the 
union sets of transitions generated by all pairs of testers 

)). Compared to CUG+, we found that untrained (P(2,SCUB 
testers using guidance (CUG+) could collaborate and improve 
the coverage signifcantly (Welch’s t-test, p < .0001), with 
average transition coverages being 36.16% and 71.39%. This 
indicates that the guidance could support pair collaboration to 
improve transition coverage. Additionally, it shows that un-
trained testers did not explore many of the new events without 
guidance. 

DISCUSSION 
In summary, we found that the combination of the GUI-level 
guidance and interactive event-fow graphs can effectively 
guide both untrained and trained testers to signifcantly in-
crease their event-interaction coverage. Consistent with In-
formation Foraging Theory [40], this fnding suggests that 
providing visual navigation cues could help guide people’s 
attention and thus improve information access. 

Testers’ experience with our techniques 
Overall, testers found the guidance “quite helpful to fnd paths 
and avoid duplicate actions” (P1) and “user friendly” (P4), 
and felt that “all scheme [was] forming just right on your eyes” 
(P5). One participant said “[the guidance] helped me to save 
my time and explore the new links without clicking the already 
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Figure 6. Testers’ interaction pattern with respect to task progression 
in time. Chart (a) shows trained and untrained testers’ guidance graph 
click counts. As time progressed, testers interacted with the guidance 
graph more because it was harder to fnd a new transition discovery. 
Chart (b) shows the number of new transition discovery counts, which 
decrease as time progresses, implying the discovery becomes more chal-
lenging (thus more clicking happening in (a) as time progresses). 

explored link” (P1). Testers also suggested a few ideas for 
improving the guidance. P11 said that it would be nice to 
enable a transition- or node-removal function, allowing testers 
to better focus on expanding major paths. This makes sense, 
given that the task scopes can be large enough to include a con-
siderable number of paths. In this case, presenting all explored 
paths could complicate the interactive event-fow graph, mak-
ing it less useful in terms of fnding new transitions. Another 
tester suggested having a trace log to “record all user doings 
in log format” (P6). Some other testers did not immediately 
realize that they could jump to previously discovered events 
by clicking the nodes; thus, they wasted some time before 
understanding this function. 

The study materials were considered realistic 
In our post hoc survey, all 12 trained testers thought the 
11 tasks were “reasonable” (P1,2,3,5,11), “realistic” (P4,8), 
“good example to analyze module relationships” (P6), and 
“covered the basic of all the websites” (P7). Also, 10 of 
them thought that the GUIs were “a normal website” (P1), 
“not different from other testing jobs” (P6), and “realistic” 
(P2,4,5,8,9,12). Two testers thought the websites were not 
realistic because “some functions are not working properly” 
(P10), and some have “bugs” (P11). But, P10 then pointed out 
that “it is okay if you just need to check the path.” 

The usage of the guidance increased throughout the task 
To further evaluate how much the guidance helped testers 
throughout the study, we measured the usage of the interactive 
event-fow graphs using effective action, a user action where 
its previous action is a click on the graph and the current ac-
tion is a new GUI state. We chose to measure effective action 
because we believe that the clickable feature in an EFG could 
potentially save testers’ effort of navigating back and forth 
using the testing GUI by directly jumping to any discovered 
states. We calculated the average number of effective actions 
per worker for the three groups that used the guidance: CUG 
(σ = 3.72), CUG+ (σ = 5.50), and CTG (σ = 14.56). Further-
more, we projected these numbers to the normalized task time, 
shown in Fig. 6(a), and revealed that, for all the conditions, the 
average number of usage had been increasing as testers per-
formed the tasks. Meanwhile, the number of new discovered 
transitions had been decreasing as time progressed, as shown 
in Fig. 6(b). One tester described their strategy as “make [the] 
basic traces for a common user, then make the possible combi-
nations.” This indicates that guidance aids testers in fnding 
less common transitions, which helps explain why testers in 
these groups had higher coverage. 

‘The guidance shaped my testing strategy.’ 
When unpacking individual testers’ traces, we found that the 
interactive event-fow graphs shaped testers navigation pat-
terns. Using Fig. 2 as an example, we found that without 
the guidance, testers had more single-thread navigation traces, 
such as “Pick Up” → “Input1” → “To Pick Up, Delivery and 
Contact Info,” whereas with the guidance testers explored mul-
tiple sub-paths to maximize the exhaustion, such as “Pick Up” 
→ “Input1” → Go back to “Pick Up” using the graph → “In-
put2.” Testers were also able to do this without the interactive 
event-fow graphs, but the cases were less frequent. 

In our follow-up interview, we also found that all six trained 
testers felt the guidance changed their testing strategies from 
their prior approach and helped them better plan their moves at 
given states. The six trained testers in the CTG condition used 
the guidance as their extended memory to “avoid the same 
trace” (P5), and “save my time and explore the new links” 
(P1). This implies that guidance could aid individual testers’ 
memory for personal information management. Prior work has 
found that untrained testers often conduct GUI testing without 
strategies [35]. We imagine that in the future, we can present 
these strategies to guide untrained testers to increase their 
performance in coverage and scale the GUI testing process. 

Scalability 
Both techniques (interactive event-fow graphs and GUI-level 
guidance) are computationally inexpensive and could thus 
easily be scaled to real-world applications. Thus, the primary 
type of scalability that we consider is the ability to scale to 
complex EFGs. Because a graph is tied to a sequence of user 
intents for completing a task, theoretically tasks that yield 
dynamic user intents and require more steps to complete would 
result in more visually complex graphs, which can be diffcult 
for testers to make use of [44]. However, prior work has 
empirically shown that only 14 unique interaction patterns 
were needed to complete common user web tasks across 10 
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of the most popular websites, including Google, Facebook, 
YouTube, Wikipedia, Twitter and Amazon [22]. That work 
also showed that this number only grew logarithmically with 
respect to the number of new web tasks added. The 11 web 
tasks we used in the study led to an average of 12.55 (σ = 5.00) 
user intents per task, including duplication. This suggests that 
our controlled experimental setting can closely represent the 
interaction patterns performed with larger-scale applications. 

USE CASES 
To use our techniques in the life cycle of software develop-
ment, developers could embed a bug report UI on top of our 
proposed techniques to enable testers to submit the defects 
they encounter while testing. This is a similar approach from 
prior work [38] and what existing crowd testing platforms do 
in practice [45]. 

Automated testing tools like Selenium [1] rely on developers 
to come up with test scenarios, design and write test cases, 
and update them manually when a GUI changes, which can 
be tedious. By combining our techniques with these testing 
tools, developers can conduct (1) user behavior analysis by an-
alyzing tester behavior, (2) combinatorial testing by combing 
different widgets across different user intents, and (3) integra-
tion testing by integrating each “unit” graph into the rest of the 
application graph, as in Fig. 7. This is because the outcome of 
our testers’ output consists of an array of all the testers’ actions 
in chronological order, which includes user actions (e.g., click, 
type), interacted DOM element ID, and other condition-related 
information, and a user intent graph that summarizes these 
testers’ actions. The dense information of our output enables 
the design of diverse further use cases. 

For example, a tester’s output test case can be used as a real 
user behavior template that can guide combinatorial testing 
for detecting defects by interactions of parameters (i.e., GUI 
elements) across different user intents [20]. In our post survey, 
a tester also acknowledged this approach: “[testing the] same 
trace is not bad, because usually a lot of bugs appear when you 
check same trace with little bit different combination of data. 
I’m not always avoiding same traces. Just trying maximum 
combinations as possible” (P6). Furthermore, developers can 
run integration testing by integrating each “unit” graph into the 
larger application-level graph (Fig. 7) and test them together 
without recruiting more testers. This type of behavior-driven 
integration testing is possible because it builds on the reason-
able assumption that integrating behavior-driven unit test cases 
would still be realistic if combined with test cases’ shared GUI 
components. 

LIMITATIONS 
Our techniques can be most benefcial for testing GUIs with 
an object model (so that overlays can be drawn over specifc 
elements) and a fnite state space (so that the EFG can be 
rendered). This includes most web and mobile UIs. UIs with 
non-fnite state spaces would need to collapse states together 
to make the graph readable to testers. For example, for a video 
playback widget where the user could scrub to an infnite 
number of playback positions, its states might be reduced to 
“start,” “middle,’ and “end” state. 

A worker’s output The user behavior tree of a GUI

Figure 7. A small “unit” graph (left) can be integrated into larger 
application-level graph (right) to test the entire graph without recruit-
ing additional testers. 

FUTURE WORK 
Our techniques rely on correctly identifying user intents (i.e., 
what is the user intent of each user action?) and Web structural 
semantics (i.e., what elements share the same user intent?). 
Prior work in the HCI community has explored methods to 
tackle these two challenging tasks [21, 17, 24]. Future work 
can (1) explore requesting the testers to annotate the possible 
user intents per element group and then use the aggregated 
annotations to instrument the GUIs, and (2) automate this pro-
cess by predicting UI semantics and grouping them in the 
associated user intent [26]. Another future direction could be 
exploring the scalability of the interactive event-fow graphs, 
specifcally, effectively guiding testers for high test coverage. 
While one could break down the large interactive event-fow 
graphs into smaller portions, it would be interesting to dis-
cover how to display a subset of nodes and edges that are more 
relevant to testers’ current GUI state. 

CONCLUSION 
This paper proposes two new simple but effective GUI crowd 
testing techniques, interactive event-fow graphs and GUI-level 
guidance, to make the process more effcient. The interactive 
event-fow graphs track and aggregates testers’ GUI actions in a 
directed graph that summarizes the navigation paths that have 
already been explored. This graph then provides GUI-level 
guidance directly in the form of overlay on the GUI that testers 
use, which helps them avoid creating duplicate test cases. Our 
results show that the guidance of these two techniques can 
effectively help both untrained and trained testers signifcantly 
increase their test coverage. 
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