
For Review
 O

nly

 

 

 
 

 

 

Oscillations in hyperasymptotic series 
 

 

Journal: Proceedings A 

Manuscript ID: Draft 

Article Type: Research 

Date Submitted by the Author: n/a 

Complete List of Authors: Chen, Yan; University of Michigan Ann Arbor, School of Information 
Segur, Harvey; University of Colorado Boulder, Applied Mathematics 

Subject: Applied mathematics < MATHEMATICS 

Keywords: hyperasymptotics, oscillation, remainder 

  

 

 

 

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A



For Review
 O

nly

rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

asymptotic analysis

Keywords:

hyperasymptotics, oscillation,

remainder, approximation

Author for correspondence:

Yan Chen

e-mail: yanchenm@umich.edu

Oscillations in

hyperasymptotic series

Yan Chen1, and Harvey Segur2

1School of Information, University of Michigan, Ann

Arbor, Michigan, US
2Department of Applied Mathematics, University of

Colorado, Boulder, Colorado, US

The method of hyperasymptotic series was invented

by Berry & Howls to approximate solutions of

Schrödinger-type ordinary differential equations (ODEs)

more accurately. We present here a variation on

their method to find the hyperasymptotic series for

the Airy function, Ai(z), which solves an ODE of

this type. Berry and Howls applied their method to

exactly this problem; we analyze the same problem

as they did in order to make clear how the two

methods differ. Our most surprising result is that the

hyperasymptotic series for Ai(z) for z > 0 exhibits

small oscillations, even though Ai(z) is not oscillatory

for z > 0. We show that these oscillations arise

as a natural consequence of the formulation of a

hyperasymptotic series.

1. Introduction

Students of calculus learn about infinite series, almost

always in terms of convergent series. Less well known are

asymptotic series, which can provide useful approximations

of functions that might not have a convergent series

representation. Asymptotic series go at least as far back

as 1730, when James Stirling showed how to approximate

log(n!) with a divergent series that becomes increasingly

accurate as n increases [13]. In their early days asymptotic

series (called divergent series at the time) were ill-defined,

so some people used them appropriately and others did

not. In 1828, Neils Abel wrote “The divergent series are the
invention of the devil, and it is a shame to base on them any
demonstration whatsoever." [1]

In 1886, Poincaré [10] and Stieltjes [12] published

papers that provided a solid mathematical basis for

asymptotic series. Here is Poincaré’s definition of a

divergent asymptotic series. A formal power series has

the form

c© The Authors. Published by the Royal Society under the terms of the
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∞
∑

m=0

am (x− x0)
m , (1.1)

where x is a variable, x0 is a fixed number, and {am} is an infinite sequence of known numbers

or functions of other variables. If x0 is infinite, then a power series take the form

∞
∑

m=0

bmx−m , (1.2)

and again {bm} denotes an infinite sequence of known numbers or functions of other variables.

Denote a partial sum of the series in (1.2) by SM (x) =

M
∑

m=0

bmx−m. In the definition of Poincaré,

the series in (1.2) is asymptotic to a function, P (x), as x→∞ if for every positive integer M <∞ ,

xM |P (x)− SM (x)| → 0 as x→∞, M fixed, (1.3)

and if

xM |P (x)− SM (x)| →∞ asM →∞, x fixed, (1.4)

In words, (1.3) guarantees that the error obtained in truncating the series at (M + 1) terms always

tends to zero faster than the last term retained in the series, as x→∞. Meanwhile, (1.4) guarantees

that the series in (1.2) does not converge to P (x) for x fixed, positive and large enough; i.e., the

series is divergent.

Stieltjes [12] addressed the issue of how to use a divergent series like that in (1.2) to obtain the

best possible approximation for P (x), at least for x> 0. For the series in (1.2) to be asymptotic in

the sense of Poincaré, the coefficients bm must grow in magnitude faster than any power of m. A

common pattern is that the error in approximating P (x) by SM (x) at fixed x,

{P (x)− SM (x)}=
∞
∑

m=M+1

bmx−m,

decreases as M increases for small values of M , but eventually the error starts to grow (as it must

because the series in (1.2) is divergent). For larger values of x, one goes to higher values of M

before the error starts to grow, and the minimal error is smaller for a larger value of x. Stieltjes

showed that the optimal stopping procedure at a fixed x is to take terms from the series as long as

the error at that x decreases with each additional term kept; once the error starts to increase, then

drop the last term retained. The series is asymptotic, so the first term not kept is a bound on the

total error at this x. By choosing to truncate the series so that the smallest term in the series is the

first not kept, one obtains an approximation for P (x) with a bound on the error that is as small as

possible by this method.

Berry [4] points out that Stokes [14] had observed that the most accurate approximation in

an asymptotic series is obtained by stopping “at the least term", and that Stokes’ observation

preceded the work of Poincaré and Stieltjes by nearly 40 years. Berry notes that the actual error

obtained by stopping in this way is often much smaller than x−M (so algebraically small) – it is

often on the order of e−x (so exponentially small).

A convergent Taylor series and a divergent asymptotic series are similar in that each gives a

sequence of increasingly accurate approximations of a given function, by truncating an infinite

series with an increasing but finite number of terms. An important difference arises in terms of

increasing the accuracy of the approximation.

• A Taylor series is convergent, so a more accurate approximation for P (x) can be obtained

simply by keeping more terms in the convergent series.
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• If one truncates a divergent asymptotic series for P (x) at the optimal stopping point

for the series at a fixed x, then this approximation is the most accurate one available

from the series for this x. The error cannot be reduced further without going outside the

framework of the asymptotic series.

In the 1980s, one century after the work of Poincaré and Stieltjes, several research groups sought

reliable methods to quantify the (usually exponentially small) term that follows the smallest

algebraic term in a formally asymptotic expansion of a given function. This work goes by several

names: asymptotics beyond all orders, exponential asymptotics, hyperasymptotics and others. See [6]

or [11] for discussions of some of these methods, and for their application to a variety of physical

problems. The objective of most of these methods is to obtain an accurate representation of the first

term beyond the optimal approximation obtained from the standard asymptotic series. This term

is usually exponentially small (in x, as x→∞), which explains the titles of exponential asymptotics
and of asymptotics beyond all orders.

The objective of Berry & Howls [5] in developing a hyperasymptotic series is more profound.

Given a function, P (x), that they seek to approximate near some limit (e.g., as x→∞), they

imagine starting with a standard asymptotic series, and truncating it at the optimal stopping

point for a fixed, large x. Then they changes variables, using a transformation developed earlier

by Dingle [9], and find a new problem to solve for the error remaining from the original

problem,{P (x)− SM (x)}. Then they solve the new problem asymptotically in a series involving

the new variable of Dingle. The series so obtained is still divergent, and they use Borel summation

of the new series to assign meaning to this new, divergent series. Then they iterate this process:

they keep terms (in terms of their new variable) of their new series until they reach its optimal

stopping point, then change variables again, obtain a third equation for the much smaller error

remaining from the second problem, and repeat. According to Berry [4], the error cannot be driven

to zero by this approach, but it can be made much smaller. Their prototypical example problem

is to find very accurate approximations of Ai(z), for large positive z. In this paper, we present a

variation on the method of Berry & Howls [5], which avoids some limitations of their approach.

The remainder of this paper is as follows. The problem in question is to find the solution of the

differential equation of Airy [3],

d2y

dz2
= z · y(z), (1.5)

that is bounded as z→∞ and that satisfies a given normalization condition. We seek a

representation of this solution that is valid for all z > 0. Eq’n (1.5) is a special case of a

one-dimensional Schrödinger-type equation,

d2y(z, λ)

dz2
= λ2Z(z) · y(z;λ), (1.6)

where Z(z) is a known function and λ is a constant. In §2, we outline both the method of Berry &

Howls [5] and our method to solve (1.5) for z > 0. Both methods begin with a transformation due

to Dingle [9], which rewrites (1.5) in “better" variables (z→ F (z), and z > 0⇔ F > 0). The two

methods diverge at the next step. We solve the transformed version of (1.5) for F > 0 by standard

means: recast the new differential equation as an integral equation, and construct a solution of

the integral equation in terms of a series that converges absolutely for F > 0. For large F > 0, the

first term in this convergent series dominates all the other terms, so we can analyze the series one

term at a time. The first term is defined in terms of an integral over known functions, and in §3 we

construct a formal asymptotic expansion for this first term by integrating by parts repeatedly. The

result is an expansion that can be carried to arbitrarily high order, but always with an explicit error

term, so there is no loss of information is constructing this series. We view this as an important

ingredient in our approach.
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• We approximate terms in the exact solution of the equation, rather than approximates the

differential equation itself.

• Our approximation of each term in the solution has an explicit remainder, so there is

never any question about the size of the truncation error.

Proceeding in this way, we arrive at the biggest surprise (to us) of this analysis: the series that we

construct in this way exhibits small but clearly measurable oscillations. In §4, we analyze these

oscillations, which seem not to have been observed in earlier work on this problem, but which

arise naturally as a consequence of the structure of a hyperasymptotic series. These oscillations

arise in the analysis of the first term in the convergent series of the solution. In §5, we analyze some

of the higher order terms in the convergent series, and show that they amplify the oscillations, so

the oscillations are not restricted to the first term in the series. We expect to see such oscillations

in any approximate solution of a differential equation in which one goes beyond the optimal

truncation of a standard asymptotic expansion. Our conclusions are summarized in §6.

2. Recurrent series to solve the Airy equation

For λ>> 1, standard WKB methods provide the dominant terms of two solutions of (1.6):

y±(z, λ)∼
exp

(

±λ

∫z
z∗

Z
1
2 (ζ)dζ

)

Z
1
4 (z)

, (2.1)

where z∗ is an arbitrary reference point. This was the starting point for the work Dingle [9], which

motivated later work by Berry & Howls [5]. Dingle viewed the divergence of the series that follow

these dominant terms as a natural consequence of the fact that either solution in (2.1) makes use of

only one of the two roots of Z(z). Because of this, Dingle introduced a new independent variable,

F (z) := 2λ

∫z
z∗

Z
1
2 (ζ)dζ, (2.2)

which is the difference between the two exponents in (2.1). The problem of interest here is to find

the solution of (1.6) that is exponentially small as z→+∞ and satisfies a normalization condition.

Then the new dependent variable that represents this small solution is represented by Y (F ;λ),

defined by

y(z, λ) =

{

e−
1
2
F

Z
1
4 (z)

}

Y (F ;λ). (2.3)

Note that the relation in (2.1) is approximate, but (2.2) and (2.3) are exact. Using (2.2) and (2.3) to

rewrite (1.6) in terms of these new variables leads to the (exact) ODE that defines Y (F ;λ):

Y ′′ (F ;λ)− Y ′ (F ;λ)− Γ (F ;λ)Y (F ;λ) = 0, (2.4a)

where

Γ (F ;λ) =

(

Z− 1
4 (z)

)

zz

4λ2Z
3
4 (z)

. (2.4b)

In the special case of (1.5), λ= 1, Z(z) = z, (2.4a) is unchanged, (2.2) becomes

F (z) =
4

3
z

3
2 , (2.4c)

and (2.4b) reduces to
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G(F ) := Γ (F ;λ= 1) =− 5

36F 2
. (2.4d)

To this point, the methods of Dingle [8], Berry & Howls [5] and us are all essentially the same. Our

approaches differ after this point because of how we each analyze (2.4). Dingle [9] and Berry &

Howls [5] follow the logic of a WBK expansion of the solution of (2.4a),(2.4b) and seek a solution

in the form

Y (F ;λ) =

∞
∑

r=0

(−1)r λ−rYr(F ), (2.5a)

with

Y0(F ) = 1. (2.5b)

Then the sequence of functions {Yr(F )} satisfy the kind of recurrence relation that arises naturally

in WKB theory,

Y
′

r+1(F ) =−Y
′′

r (F )−G(F )Y r(F ), (2.5c)

with

G(F ) = λ2Γ (F ;λ) =

(

Z− 1
4 (z)

)

zz

4Z
3
4 (z)

. (2.5d)

(The formula given in [5] for G(F ) contains misprints.) If the series in (2.5a) converged, then the

sum of (2.5c) over all non-negative values of r would be exactly equivalent to (2.4a). However,

Berry [4] observes that the series in (2.5a) is divergent, so summing (2.5c) over all positive values

of r need not be equivalent to (2.4a). In addition, Berry & Howls [5] use Borel summation to assign

finite values to their divergent series. This procedure is systematic, but the finite value it produces

may or may not be the “correct" one for a particular problem. For both of these reasons, we sought

another way to construct extremely accurate approximations of the Airy function for z > 0, which

we discuss next.

The method of variation of parameters is a standard way to reformulate a differential equation

like (2.4) as an integral equation. The integral equation then provides a one-parameter family of

solutions of (2.4), each of which tends to zero as z→+∞. The free parameter in this family can

then be chosen to satisfy the normalization condition, so the construction yields Ai(z) without

approximation. The integral equation corresponding to (2.4) is

Y (F ) =A+

∫∞
F

(

1− eF−f
)

G(f)Y (f)df, (2.6)

where G(f) is given in (2.4d), and A is a free constant. One can verify by differentiating (2.6) twice

that if (2.6) has a solution that is bounded for all F > 0, then that solution also satisfies (2.4). The

solution of (2.6) can be written in the form

Y (F ) =

∞
∑

n=0

Yn(F ), (2.7a)

Y0(F ) =A, (2.7b)

and for n≥ 0,

Yn+1(F ) =− 5

36

∫∞
F

(

1− eF−f
)

f−2Yn(f)df. (2.7c)

Eq’ns (2.7a),(2.7b) resemble (2.5a),(2.5b) with λ= 1, but we emphasize that (2.7c) does not agree

with (2.5c). Proceeding order-by-order, one obtains the following bounds from (2.7b),(2.7c):
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|Y0(F )|= |A|, (2.7d)

|Y1(F )| ≤ |A|
(

5

36

)

F−1; (2.7e)

for n≥ 1, one shows by induction that

|Yn(F )| ≤ |A|
(

5

36

)n
F−n

n!
. (2.7f )

Summing these, one finds that

|Y (F )| ≤
∞
∑

n=0

|Yn(F )| ≤ |A|
∞
∑

n=0

(

5
36F

)n

n!
= |A| e(

5
36F ). (2.8)

Therefore the series in (2.7a),(2.7b) converges absolutely for F > 0, and (2.6) has a solution that is

bounded for all F > 0. Formally differentiating (2.6) yields an explicit formula for Y
′

(F ), and (2.8)

guarantees that Y
′

(F ) is also bounded for all F > 0. Differentiating (2.6) a second time confirms

that the solution of (2.6) also satisfies (2.4).

Combining these results with (2.3) shows that for all z > 0

Ai(z) =

{

e−
1
2
F

z
1
4

}

Y (F ), (2.9)

where Y (F ) is the solution to (2.6), F (z) is given by (2.4c), and the constant, A, is chosen

to satisfy the normalization condition. In addition, Y (F ) is defined by the convergent infinite

series in (2.7a),(2.7b), and the bounds in (2.7d),(2.7e),(2.7f ) show that the terms in this series are

naturally ordered, so that higher terms in the series decay faster for F >> 1. Therefore, the series

in (2.7a),(2.7b) automatically satisfies (1.3), the first of Poincaré’s requirements for an asymptotic

series as F →∞ , but not (1.4), because the series is convergent, not divergent.

We summarize this section with three comments.

• No approximations have been made to this point.

• The series in (2.7) is different from that in (2.5), even though both are motivated by a

desire to find more accurate approximations for Ai(z) than one obtains by a standard

asymptotic series.

• Because the terms in the series in (2.7) are naturally ordered as shown in

(2.7d),(2.7e),(2.7f ), we can obtain more detailed (i.e., hyperasymptotic) information by

analyzing each term in the series in (2.7). That analysis is carried out in the next section.

3. Analysis of the Y1(F ) term in (2.7)

From (2.7b),(2.7c), the Y1(F ) term in the series in (2.7) is

Y1(F ;A) =− 5

36
A

∫∞
F

(

1− eF−f
)

f−2df. (3.1)

Integrating the first term in the integrand provides the first term in the asymptotic expansion of

Y1(F ;A) for F >> 1. Then repeatedly integrating the second term in the integrand by parts yields

subsequent terms in this asymptotic series, with a different remainder term appearing after each

integration. The result after N integrations is

Y1(F ;A) =
5

36
A

[

N
∑

n=1

(−1) n (n− 1)!F−n + (−1)N−1 N !QN (F )

]

, (3.2a)

where we define
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N !QN (F ) := min
[

N !
∫∞
F

eF−ff−(N+1)df
]

N
. (3.2b)

We discover an interesting phenomenon for picking the optimal N at which to truncate this

asymptotic series. Eq’n (3.2b) gives an explicit formula for the remainder – the error incurred

in approximating Y1(F ;A) by only the finite sum in (3.2a), so for any F > 0, we want the value

of N that minimizes this remainder at that F . We find that as F increases a little beyond the mid-

value of two consecutive integers, the optimal stopping point (N) changes from the integer just

below F to the integer just above it. Therefore we choose our optimal N by directly computing

the remainder itself, and we let N !QN (F ) denote the minimum of this remainder.

To control the remainder, N !QN (F ), we first find upper and lower bounds on it. As shown in

Appendix A, if |N − F | ≤ 1 and 3≤ F <∞ , then N !QN (F ) has an upper bound,

N !QN (F )< 4

(

e−F

√
F

)

. (3.3)

The numerical coefficient in (3.3) can be decreased (from 4 to
√
2πe

1
36 ) if we evaluate N !QN (F )

only at integer values of F , and it must be increased if we consider values of N beyond

|N − F | ≤ 1. However, there seems to be no reason to consider this broader range, because

numerical calculations of the quantity minimized in (3.2b) shows that the minimum remainder

always occurs for an N with |N − F |< 1.

A lower bound is obtained by similar means. As shown in Appendix A, for |N − F |< 1, F ≥ 3,

N !QN (F )> 1.53

(

e−(F+1)

√
F + 1

)

. (3.4)

These bounds establish part of the structure of the hyperasymptotic series. Note that both upper

and lower bounds decay exponentially fast as F →+∞, as predicted by Stokes [14] and Stieltjes

[12].

Note also that the upper and lower bounds decay at approximately the same rate

(

e−F

√
F

)

,

which suggests that N !QN (F ) might decay at this rate as well. Figure 1 shows that this suggestion

is correct, at least at leading order and at least in three widely separated intervals of F > 0.

Figure 1 also provides an estimate of the numerical coefficient in the leading order behavior of

N !QN (F ) as F →+∞. From Figure 1, we estimate that for F >> 1,

N !QN (F )∼
√

π

2

(

e−F

√
F

)

. (3.5)

This estimate of the numerical coefficient in (3.5) can be refined by subsequent analysis.

The main tools in our analysis, in (3.5) and in what follows, are direct numerical evaluation of

the exact remainder, given in (3.2b), plus curve-fitting. Nothing more complicated is needed for

this problem, because the remainder is known explicitly and is relatively simple.

The oscillations advertised in the title of this paper are not obvious in Figure 1, because their

amplitude is too small to be seen with the resolution used in Figure 1. Even so, their existence is

important in a hyperasymptotic series, which promises to provide detailed information to levels

of accuracy much more precise than those available in a standard asymptotic series.

The next step in the analysis, therefore, is to examine the structure of N !QN (F ), as a function

of F > 0 in more detail. This step is carried out in section 4.

4. Oscillations in the hyperasymptotic series

Figure 2 shows the graph of the left side of (3.5), divided by the right side, as a function of F . If

(3.5) were an exact equation, the graph would be a horizontal line, at height 1. Instead, Figure 2
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represents the dominant term as F →∞ , but also its magnitude is an upper bound for

that Yn(F ), for all F > 0.

• Because the first term in the representation of each Yn(F ) matches its upper bound,

and because the maximum of |Yn(F )| decreases as n increases, the term (F−1) can

appear only in the formula for Y1(F ), (F−2) can appear only in the formulae for

{Y1(F ), Y2(F )}, (F−3) can appear only in the formulae for {Y1(F ), Y2(F ), Y3(F )}, and

so on. A consequence of this structure is that for fixed F , the finite series of integer powers

of F−1 gets systematically shorter as one proceeds to higher Yn(F ).

• The terms within the square brackets in (5.1b) alternate in sign: even powers of F−1 are

positive, while odd powers of F−1 are negative. This pattern of alternating signs in Y1(F )

does not depend on the choice of N = 4 for the example in (5.1). Instead, it follows from

the fact that the algebraic terms in Y1(F ) are obtained by repeated integration by parts.

For the same reason, the coefficient of the remainder term in (5.1b), {4!Q4(F )}, is negative;

if we had chosen N = 5, the coefficient of {5!Q5(F )} would have been positive.

• Meanwhile, the leading algebraic term in each Yn(F ) alternates in sign as (n) increases

because of the negative sign outside the integral in (2.7c). This, along with the fact that

the leading algebraic term in the representation of Yn+1(F ) is one power of F−1 higher

than that in Yn(F ), guarantees that the signs of the even and odd terms in Yn+1(F )

match those in Yn(F ). For example, the coefficient of F−2 is positive in Y1(F ) and Y2(F );

the coefficient of F−3 is negative in Y1(F ), Y2(F ) and Y3(F ), and so on. Therefore, the

algebraic terms in the higher Yn(F ) reinforce the signs of the algebraic terms in Y1(F ) –

there is no cancellation from the higher Yn(F ). Again, this pattern does not depend on

the choice of N = 4 for the example in (5.1).

• This pattern of signs also applies to the remainder term in Y1(F ). As noted above, the

coefficient of {4!Q4(F )} is negative in (5.1b) because N = 4 is even. Then {4!Q4(F )}
reappears in Y2(F ) and Y3(F ), always with a negative sign. Therefore the small

oscillations that first appear in Y1(F ) are reinforced by their reappearance in higher

order Yn(F ) – there is no cancellation of the oscillations due to higher order terms in

the convergent series.

• See Appendix B for a brief discussion of the remainder term for every Yn(F ) with n> 1.

6. Summary and Conclusions

This paper was inspired by earlier work by Berry & Howls [5], who proposed a new method

to construct highly accurate approximate solutions of Schrödinger-type ordinary differential

equations (ODEs), of the form shown in (1.6). Our objective has been to provide a variation on

their method that avoids some ambiguities in their approach. Like them, we use the classical Airy

equation (1.5) as our model problem, and like them, we begin by using a change of variables

developed by Dingle [9] to transform the original problem into a new, equivalent ODE. Our

approach differs from that of Dingle [9] or of Berry & Howls [5] in that we construct an exact

solution of the transformed ODE, in the form of a bounded, convergent series for F > 0 (in (2.4), or

for z > 0 in (1.5)). This convergent series is quite different from the hyperasymptotic series of Berry

& Howls [5]. Then we represent each term in our (exact) convergent series with an (approximate)

hyperasymptotic series, which again is different from that in [5].

Our most important result is the discovery that the hyperasymptotic series for Y (F ), which

is equivalent to a hyperasymptotic series for the usual Airy function, contains oscillations

with exponentially small amplitudes, even though Ai(z) itself is not oscillatory for z > 0.

These oscillations first appear in the (exact) remainder term for Y1(F ), the first term in the

convergent series representation of Y (F ). The oscillations also appear in subsequent terms in

the convergent series, and their (+/−) signs are such that these oscillations add constructively to

the oscillations in Y1(F ) – there is no cancellation. These oscillations are an essential ingredient in

any hyperasymptotic representation of Y (F ).
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The explanation of these small oscillations is fairly simple – they arise as a consequence of the

procedure to construct a hyperasymptotic series. Recall that the first step in the procedure is to

build a standard asymptotic (and divergent) series that approximates the function in question

in some limit (e.g., F →∞ for Y (F )). Because this series diverges, one truncates the series

after N terms, and the optimal value of N depends on F . This optimal N is a new variable,

so there are two variables (F,N) in whatever series is appended to the original series. But

F changes continuously while N , which takes only integer values, changes discretely. So the

error in approximating the function in question by a truncated asymptotic series exhibits small

oscillations, with a period of approximately 1, as F moves through the region where N is the

optimal truncation, and then crosses into the region where (N + 1) is optimal. At the boundary

of these two regions, the error in approximating the function with the truncated series is a local

maximum. The small oscillations observed in Figures 2 and 4 are just what are needed to correct

for the oscillatory accuracy of the truncated asymptotic series. There is nothing special about

the Airy function here – one should expect to see oscillations like these in hyperasymptotic

representations of many smooth, non-oscillatory functions.
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Appendix A: Upper and lower bounds on N !QN(F )

Upper bound:

An upper bound on N !QN (F ) follows from three basic inequalities.

• Stirling’s formula (eq’n 6.1.38 of [2]):

N !<
√
2πNN+ 1

2 e−N+ 1
12N . (A1)

• QN (F ) can be bounded in two different ways:

QN (F ) =
∫∞
F

eF−ff−(N+1)df <
∫∞
F

f−(N+1)df = 1
NFN

; (A2)

QN (F ) =
∫∞
F

eF−ff−(N+1)df < 1
FN+1

∫∞
F

eF−fdf = 1
FN+1 . (A3)

First, suppose N >F . Then from (A1) and (A3),

N !QN (F )<
√
2πNN+ 1

2 e−N+ 1
12N

1

FN+1
,

⇒ N !QN (F )<
√
2πe

1
12N

1√
F

(

N

F

)N+ 1
2

e−N . (A4)

On the right side of (A4), set N = F + a, with 0<a<F . Then (A4) can be written as

N !QN (F )<
√
2πe

1
12N

(

e−F

√
F

)

e−a
(

1 +
a

F

)F (

1 +
a

F

)a+ 1
2

. (A5)

Define
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P (F, a) := e−a
(

1 +
a

F

)F (

1 +
a

F

)a+ 1
2

> 0. (A6)

Note that as F →∞, the product of the first two terms tends to 1, and so does the last term. To

determine whether P (F, a) tends to 1 from above or below, calculate ∂FP (F, a):

P (F, a) := e[−a+F ·ln(1+ a

F
)+(a+ 1

2 )ln((1+
a

F
)],

⇒ ∂FP (F, a) = P (F, a)
[

ln
(

1 + a
F

)

+ F
1+ a

F

(−a
F 2

)

+
a+ 1

2

1+ a

F

(−a
F 2

)

]

,

For |a/F |< 1, ln
(

1 +
a

F

)

<
a

F
, so

∂FP (F, a)<P (F, a)
[

a
F + 1

1+ a

F

(−a
F

)

+
a+ 1

2

1+ a

F

(−a
F 2

)

]

.

⇒ ∂FP (F, a)<P (F, a)
[

−1
2F ·

s

F

1+ a

F

]

< 0. (A7)

for any F > 0, 0<a<F , so P (F, a) is a decreasing function of F . Therefore, if F ≥ 3 and 0<a<

F , then

P (F, a)<P (3, a) = e−a
(

1 + a
3

)3+a+ 1
2 .

Next show that ∂aP (3, a)> 0, so P (3, a) is an increasing function of a, for a> 0. So P (3, a) grows

without bound a increases. However, our objective is minimize the error, N !QN (F ), so we can

restrict a to 0≤ a≤ 1. Therefore

P (F, a)<P (3, a)<P (3, 1) = e−1 ( 4
3

)

9
2 . (A8)

Combining everything, if follows that for N >F ≥ 3, with 0≤ a=N − F ≤ 1, then

N !QN (F )<
√
2πe

1
12N

(

e−F

√
F

)

e−1
(

4

3

)
9
2

< 3.50

(

e−F

√
F

)

. (A9)

This is consistent with (3.3).

The calculation for 3≤N <F follows the same logic, but one starts with (A1) and (A2), instead

of (A1) and (A3), and one sets N = F − b, with 0≤ b < F . Then one obtains

N !QN (F )<
√
2πe

1
12N

1√
F

(

N

F

)N− 1
2

e−N , (A10)

instead of (A4). Then one obtains

N !QN (F )<
√
2πe

1
12N

(

e−F

√
F

)

eb
(

1− b

F

)F (

1− b

F

)−(b+ 1
2 )
, (A11)

instead of (A5). Finally, one finds that for 3≤N <F , and 0< b< 1,

N !QN (F )<
√
2πe1+

1
36

(

2

3

)
3
2

(

e−F

√
F

)

< 3.82

(

e−F

√
F

)

, (A12)

instead of (A10). Both (A10) and (A12) are consistent with (3.3).
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Lower bound:

A lower bound on the error term is obtained from two basic inequalities.

• Stirling’s formula (eq’n 6.1.38 of [2]):

N !>
√
2πNN+ 1

2 e−N . (A13)

• A lower bound on QN (F )

QN (F ) =
∫∞
F

eF−ff−(N+1)df > 1
(F+1)N+1

∫F+1
F

eF−fdf =
(1−e−1)
(F+1)N+1 . (A14)

Set N = F + c, |c| ≤ 1, combine (A13) with (A14), then do some rearrangements to obtain

N !QN (F )>
√
2π
(

1− e−1
)

(

e−(F+1)

√
F + 1

)

e1−c

(

F + 1− (1− c)

F + 1

)F+1−( 1
2
−c)

. (A15)

Define

P (F, c) := e1−c
(

1− 1−c
F+1

)F+1 (

1− 1−c
F+1

)−( 1
2
−c)

> 0. (A16)

As above, the product of the first two terms in (A15) tends to 1 as (F + 1)→∞, and so does the

third term. To determine whether P (F, c) tends to 1 from above or below, calculate ∂FP (F, c):

∂FP (F, c) = P (F, c)[ln(1− 1− c

F + 1
) +

F + 1− ( 12 − c)

1− 1−c
F+1

(
1− c

(F + 1)2
)]

=
P (F, c)

(1− 1−c
F+1 )

[(1− 1− c

F + 1
) ln(1− 1− c

F + 1
) + (1−

1
2 − c

F + 1
)(

1− c

F + 1
)].

For |c|< 1 and F ≥ 3, it follows that 0< 1−c
F+1 < 1, so the natural log has a convergent series. For

convenience, define

A : = (1− 1− c

F + 1
) ln(1− 1− c

F + 1
))

= (1− 1− c

F + 1
)

∞
∑

n=1

1

n
(
1− c

F + 1
)n

⇒A=−(
1− c

F + 1
) +

1

2
(
1− c

F + 1
)2 +

1

6
(
1− c

F + 1
)3 +

1

12
(
1− c

F + 1
)4 + · · ·+ 1

n(n− 1)
(
1− c

F + 1
)n + . . . .

Also define

B := (1−
1
2 − c

F + 1
)(

1− c

F + 1
) = (

1− c

F + 1
)− (

( 12 − c)(1− c)

(F + 1)2
).

Therefore

A+B =
c(1− c)

(F + 1)2
+

∞
∑

n=3

1

n(n− 1)
(
1− c

F + 1
)n,

= (
1− c

F + 1
)
[ c

F + 1
+

∞
∑

m=2

1

(m+ 1)m
(
1− c

F + 1
)m
]

.
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• If −1< c< 0, F ≥ 3, then A+B < 0, so ∂FP (F, c)< 0, and P (F, c) decreases as F

increases. Thus, in this case the infimum of P (F, c) is 1, approached as F →∞.

• If 0≤ c≤ 1, F ≥ 3 then A+B > 0, so ∂FP (F, c)> 0, and P (F, c) increases as F increases.

Therefore the minimum of P (F, c) occurs at F = 3. This minimum of P (3, c) occurs near

c= 0.46, and is approximately

min{P (3, c)} ∼ 0.9663.

Combining this with (A15) and (A16) yields

N !QN (F )>
√
2π(1− e−1)(0.966)

(e−(F+1)

√
F + 1

)

> 1.53
(e−(F+1)

√
F + 1

)

. (A17)

This is lower bound in (3.4).

Appendix B: Upper bounds on the remainder term in Yn(F ),
n≥ 2
The analysis in Appendix A provides upper and lower bounds on the remainder term for Y1(F ),

i.e., on the term that remains after approximating Y1(F ) with a finite series of algebraic terms,

truncated at the optimal stopping point for the specific F of interest. But as we show next, that

analysis is not sufficient to obtain an upper bound on the remainder term for Y2(F ), or the

remainder term for Yn(F ) for any n> 1.

Consider eq’ns (5.1). The final term in (5.1b) is the remainder for Y1(F ). It appears once in

(5.1b), but it appears twice in (5.1c), once as a term in the finite series for Y2(F ), and then again

inside an integral in the final term in (5.1c), which is the remainder for Y2(F ). Then this remainder

for Y2(F ) appears twice in (5.1d), once as a term in the finite series for Y3(F ), then again inside

an integral, which is the remainder for Y3(F ).

This pattern persists for all integer n> 1. By construction, the final term in the formula for

Yn−1(F ) is the remainder term for Yn−1(F ). Then that term appears twice in the formula for

Yn(F ), once as a term in the finite series for Yn(F ), and then again inside an integral that is the

remainder term for Yn(F ). Each of these new remainder terms is an integral from the value fixed

value of F of interest (e.g., F = 4 in the example in (5.1)) to infinity. The analysis in Appendix A is

valid for values of F near a specified value, but for n≥ 2, the remainder term for Yn(F ) requires

knowledge of N ! and of QN (F ) for all F larger than the specified, fixed value. The purpose of

this Appendix is to provide this information.

Some notation:

• According to (3.2b), N !QN (F ) denotes the minimum value of this product at a fixed F ,

when the product is minimized over integer values of N .

• For fixed F > 0, with N chosen to minimized N !QN (F ), the remainder term for Y2(F )

requires knowledge of N ! and also of QN (F ) for all F >N , because of the integral in

(5.1c). We denote the product of N ! and of QN (F ) for all F >N , by

N ! •QN (F ),

in order to distinguish this product from the one minimized over integer N > 0.

Let N be a positive integer. Then simple bounds on N ! •QN (F ) are obtained by multiplying (A1)

and (A3):

0<N ! •QN (F )<
√
2π exp(

1

12N
)(
e−N

√
N

)(
N

F
)N+1. (B1)

Comments about (B1):
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• The decay rate of N ! •QN (F ) as F →∞ is always KF−(N+1), for some K > 0. This

decay rate allows one to bound the integral in (5.1c), and also to obtain a bound on

the decay rate of the new integral in (5.1d). This process continues for all higher order

Yn(F ), where the decay rate as F →∞ of the remainder term for Yn(F ) determines the

corresponding decay rate of the remainder term for Yn+1(F ). It is easy to show that if the

remainder term for Yn(F ) decays like F−p as F →∞, then the decay rate for Yn+1(F )

decays like F−(p+1) as F →∞.

• The remainder term in Y1(F ) is N !QN (F ). The upper bound of N !QN (F ) in (3.3),

its lower bound in (3.4) and its estimate in (3.5) all contain the factor ( e
−F

√
F
),

which guarantees that N !QN (F ) becomes exponentially small as F →∞. In (B1), the

corresponding factor is ( e
−N

√
N

), because F and N are not linked together in (B1) as they are

in (3.3), (3.4), (3.5). Even so, the lower limit of the integral in QN (F ) is never smaller than

(N − 1). For |F −N |< 1, 3≤ F <∞, N ! •QN (F ) is bounded as in (3.3). For 3≤N <F ,

an upper bound that is uniformly valid is

N ! •QN (F )< 13.05(
e−N

√
N

). (B2)
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