
Umitation: Retargeting UI Behavior Examples for Website
Design

Yan Chen
yanchen@dgp.toronto.edu
University of Toronto

Toronto, Ontario, Canada

Tovi Grossman
tovi@dgp.toronto.edu
University of Toronto

Toronto, Ontario, Canada

Figure 1: The workflow of Umitation. There are three steps to using Umitation to retarget example UI behaviors from a source
website to a target website. (Step 1) Users first specify one or more source elements on the source website and then record their
behaviors by interacting with them. Umitation will automatically capture the Document Object Model (DOM) changes. (Step
2) Umitation displays the low-level details of the recorded behaviors on its main panel, and users can directly manipulate the
meta data of the behaviors. (Step 3) Umitation guides users to retarget the behaviors to appropriate elements (e.g., structurally
similar elements) on the target website.

ABSTRACT
Interface designers often refer to UI behavior examples found in the
wild (e.g., commercial websites) for reference or design inspiration.
While past research has looked at retargeting interface and web-
page design, limited work has explored the challenges in retargeting
interactive visual behaviors. We introduce Umitation, a system that
helps designers extract, edit, and adapt example front-end UI behav-
iors to target websites. Umitation can also help designers specify
the desired behaviors and reconcile their intended interaction de-
tails with their existing UI. In a qualitative evaluation, we found
evidence that Umitation helps participants extract and retarget
dynamic front-end UI behavior examples quickly and expressively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00
https://doi.org/10.1145/3472749.3474796

KEYWORDS
Retarget design, UI behavior examples, user intent and disambigua-
tion
ACM Reference Format:
Yan Chen and Tovi Grossman. 2021. Umitation: Retargeting UI Behavior
Examples for Website Design. In The 34th Annual ACM Symposium on User
Interface Software and Technology (UIST ’21), October 10–14, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3472749.3474796

1 INTRODUCTION
Interactive behavior, defined by Myers et al. [48] as the “feel” (as
opposed to the “look”) of a user interface (UI), is a key component of
the modern website. When designed well, interactive UI behaviors
can make a website engaging and user-friendly. UI designers often
browse behavior examples and use them on their own artifacts to
explore different aspects of the design [22, 50]. Exploring existing
solutions that fit the current context can help designers creatively
address unfamiliar situations [30, 31]. In-context interactive mock-
ups could also help make team communication more effective [11].
However, current practices for leveraging design examples on a
new interface have four main limitations: they are often 1) informal,
with designers using professional tools (e.g., Adobe XD, Figma) with
a limited set of pre-defined modules; or 2) ad hoc, with designers

https://doi.org/10.1145/3472749.3474796
https://doi.org/10.1145/3472749.3474796
https://doi.org/10.1145/3472749.3474796

UIST ’21, October 10–14, 2021, Virtual Event, USA Yan Chen, et al.

saving multiple versions of files with cryptic file names to indicate
their relevance [50]; or 3) time-consuming, with designers viewing
and modifying the source code from the example websites [36];
or 4) ambiguous, with designers omitting critical design contexts
when collaborating with developers [38, 48].

Past research has looked at retargeting UI visual design [33, 56],
but the process of retargeting interactive and dynamic behaviors
remains unaddressed due to their high complexity and dynamic
nature. When retargeting example UI behaviors to their own inter-
faces, designers face several challenges. First, modern UI behaviors
(e.g., responsive effects) often involve multiple response elements,
each of which may have dynamic effects present across several
CSS attributes. This makes the behavior difficult to track, under-
stand, and adapt to a separate UI. Second, in the later stages of UI
development, designers’ interfaces can be arbitrarily complex, with
many pre-built elements and behaviors. This makes it tedious to
specify the low-level details when experimenting with example
behaviors (e.g., identifying the trigger object and response objects)
and to keep track of behavior variants. Third, the implementation of
the example UI behaviors can require domain expertise in specific
frameworks and libraries, which designers may not have. These
limitations led to our research question: How can we make it eas-
ier for designers to retarget UI behavior examples to their own
interfaces?

In this paper we introduce Umitation,1 an interactive system that
allows interface designers to easily extract and efficiently retar-
get dynamic UI behavior examples from existing (source) websites
to their own (target) websites. These examples can be new effects
the users want to experiment with, or they can act as learning
materials that help users understand the functional relationships
between objects in the example behaviors. We designed Umitation
to retarget only the front-end visual behaviors that occur within
the DOM tree of a website, rather than the behaviors’ underlying
computational functions. This design can help designers avoid the
complexity of detailed implementation by providing a low barrier
to entry and contextualized guidance to help specify details while
maintaining considerable expressiveness. It is also designed in ac-
cordance with what David Kelley terms “enlightened trial and error,”
in which prototypes are fluidly produced and evaluated.

Led by prior research, we designed Umitation with three goals
to help users easily and efficiently retarget UI behavior examples
they find in the wild (more details in Section 2).

• DG1: Quick to extract UI behavior: Designers need to
quickly extract and manage the dynamic UI behavior exam-
ples found in the wild for further usage [8, 19, 36].

• DG2: Easy to understand and modify the example be-
haviors: Designers need to understand the interaction com-
ponents in the recorded examples and be able to manipulate
and remix them for further use [11, 23].

• DG3: Easy to experiment with multiple example be-
haviors on different interfaces: Designers should be able
to easily retarget variants and alternatives of the example
behaviors in other UI contexts [20, 48, 50].

1Umitation is an acronym for User interface behavior imitation.

To achieve these goals, Umitation elicits and decomposes an
interface behavior into four distinct components: trigger, trigger ob-
ject, response, and response object. Consider the example illustrated
in Figure 1, in which a user wishes to retarget the behavior of a
dropdown menu. In this example, these four components corre-
spond to a mouse click (trigger), the menu button (trigger object),
the dropdown list’s fade-in (response), and the dropdown list itself
(response object). Figure 1 shows three steps of using Umitation.
(Step 1) To specify which example behaviors to extract, users first
select one or more source elements on the source website, and
then they record the elements’ behaviors by interacting with them.
Umitation will automatically capture the Document Object Model
(DOM) changes (e.g., via MutationObserver) . (Step 2) To help
users repurpose the example behaviors, Umitation unpacks the
behavior details (e.g., relationships between the trigger objects and
response objects) and tabulates them on its main panel. This panel
is also designed to reduce users’ efforts in modifying the extracted
behaviors by allowing them to directly manipulate and remix the
behaviors’ meta data. (Step 3) To help specify the target elements
on the user’s website, Umitation automatically finds elements on
the target websites that are structurally similar (e.g., position, size)
to those on the source websites. By adding switch buttons (i.e.,
toggle the event listeners added on the elements) associated with
each behavior of the target elements (e.g., B1, B2, B3 of Step 3),
Umitation reduces the context-switching effort of experimenting
with multiple versions of behaviors.

We conducted a user study with eight experienced UI designers
to evaluate Umitation’s usability and efficiency. We found that
participants could use Umitation to successfully extract and retarget
five different types of UI behavior examples. The participants found
that Umitation helped them understand the behaviors more easily
by unpacking the black box of complex UI behaviors, disambiguated
the original abstract intent by guiding them to specify the low-level
details, and saved them the effort of searching the source code
and identifying implementations. Additionally, although our tool
was not formally compared to baseline approaches, participants
reported that Umitation could help them save time in an order of
magnitude compared to their current practices. In the final section
of this work, we discuss future work that can adapt our approach
to other types of interactive behaviors.

This work is an important step towards the vision of real-time,
example-based dynamic behavior retargeting with a focus on user
intent disambiguation. We make the following contributions:

• A set of novel interaction designs and techniques that allow
users to easily extract, manipulate, and retarget dynamic UI
behavior examples and their variants to other websites.

• Umitation, an end-to-end system that integrates these tech-
niques, along with a user study showing its usability and
effectiveness in helping make interface exploration easy and
efficient.

2 RELATEDWORK
Umitation builds on decades of rapid UI prototyping tools and
demonstrates how users can easily retarget complex and dynamic
interactive behaviors. It also extends the literature on user intent
disambiguation interfaces with functional, intelligent behaviors. In

Umitation: Retargeting UI Behavior Examples for Website Design UIST ’21, October 10–14, 2021, Virtual Event, USA

this section, we discuss prior work in example retargeting, func-
tional copy and paste, and record and reuse.

2.1 Example-Based Retargeting for Interface
Design

Rapid UI prototyping is a well-recognized and common practice
throughout the design lifecycle [4]. It helps people to more quickly
get early feedback on designs and capture their fleeting ideas. Early
research efforts in supporting rapid prototyping were mainly spent
on reducing the overhead costs of sketching [34, 43]. As the Web
now offers a corpus of example resources, more recent efforts have
focused on helping designers make use of these examples in their
work. Using examples of previous work and knowledge is an estab-
lished technique [6] that can provide designers potential options
for modeling and inspiration. Viewing existing designs is also a
helpful step in sparking creativity [3].

Prior work has explored methods of helping people more effi-
ciently search examples [36], suggest alternatives, comparemultiple
versions [45], and even auto-generate examples. For example, Lee
et al. [36] showed that designers prefer an adaptive example selec-
tion process using interface metadata for viewing and navigating
example galleries. They also found that users made use of multiple
example UIs when designing new websites. Dow et al. showed that
sharing multiple designs could improve outcomes, encourage ex-
ploration, and enhance group rapport [16]. Multiple systems have
explored the space of alternative design, especially within a mixed-
initiative paradigm in which users and intelligent agents take turns
refining the design details [47, 51, 55, 61]. Kumar et al. developed a
series of models to tackle the problem of automatically retargeting
web design examples. However, these techniques focused only on
the interface’s static appearance (e.g., page layout) without con-
sidering user behaviors, which are also part of the interaction and
which use meta data that can be dynamic and non-trivial to specify
and capture. Therefore, our first design goal (DG1) is to quickly
extract UI behavior examples.

2.2 Enhanced Copy and Paste
After finding relevant examples, retargeting them for one’s own pur-
pose — which Gick and Holyoak term “analogy pervades thought”
—is more efficient than reinventing them from scratch [17]. Our
work was inspired by many prior techniques that allow users to
copy and paste example objects from one place to another, which is
the most common form of retargeting examples. Among them, the
most commonly used is the text copy-and-paste technique, which
allows users to create a duplicate of a word or a passage and place
it somewhere else. More recently, as objects have become more
complex, many enhanced copy-and-paste techniques have been
proposed. Microsoft’s Format Painter supports copy-and-paste for
object properties (e.g., colors, fonts) [1], Citrine [54] enables users to
structurally copy and paste text data (e.g., mailing addresses) across
different applications, and much work in the machine-learning
community has focused on exploring how to transfer the properties
or skeletons of content, such as body poses in videos [7].

2.3 Connecting UI Design and Implementation
In the context of UI design, several systems have proposed tech-
niques to help retrieve a design’s associated code [24, 46], teach
the relevant implementation [42], create web mashups [29, 60], or
implement code using existing app functions [29]. WebCrystal [8]
helps users to inspect and learn from existing UI layout implemen-
tations and later recreate their own, but it focuses only on the static
layout and style aspects of UI design. Hibschman et al. developed
multiple tools to ease the learning process for understanding the
implementation of interactive UI behaviors [23, 24]. While these
systems help ease the process of understanding interactive behaviors
(DG2), which also guides our system design, they either focus on
helping users learn the implementation or require them to know
the implementation of the examples before repurposing.

2.4 Exploration and Prototyping
Our work differs from this prior work in a fundamental way: instead
of easing the implementation learning and reuse process, Umita-
tion is designed to help designers rapidly explore and prototype
example UI behaviors found in the wild on their own interfaces.
To achieve this goal, Umitation helps designers avoid detailed im-
plementations by providing a low barrier to entry for UI behavior
extraction, manipulation, and experimentation (Fig. 1). This design
is partially inspired by several prior systems that allow users to
create UIs via direct manipulation (DG2) and spreadsheet-like UIs.
For instance, d.mix [19] allows users to create UIs by directly select-
ing example elements from existing websites, and the created UIs
still connect with the websites (e.g., data gets updated). Gneiss [9]
and Vegemite [44] let users create websites using a spreadsheet
where the data links to pre-made functions. Prior work has shown
that these approaches are effective at helping users to more easily
compare multiple versions of designs when creating web UIs.We
followed this design guideline and have aimed to make it easy to
use Umitation to experiment with multiple versions of the behaviors
(DG3).

2.5 Recording and Reuse
An important technical component of Umitation’s system is the UI
behavior extraction technique (Fig. 1 from Step 1 to Step 2), which
relates to the body of work using the record and reuse (R&R) tech-
nique. Unlike video recording, R&R captures and presents the rich
meta data pertaining to the user’s operations (e.g., attribute changes,
user input events), making data management and debugging more
simple. Systems such as Scry [5], Doppio [14], and FireCrystal [52]
use this technique to support designers in understanding UI be-
haviors. Other than web UI design, tools like Chronicle [18] and
Aquamarine [49] capture and visualize the meta data of user op-
erations on software applications, making their operation history
easier to retrieve or manipulate. ReverseORC [25] supports retar-
geting the dynamic resizing behavior of a GUI across platforms.
Systems like Montage [37] and Pronto [39] support VR/AR record-
ing augmentation for new digital content prototyping. Text-based
R&R technique is also commonly used for learning [2] and content
updating [53]. Adding to this body of work, Umitation focuses on
helping disambiguate user intent by using the R&R technique for

UIST ’21, October 10–14, 2021, Virtual Event, USA Yan Chen, et al.

complex and dynamic UI behavior retargeting for main component
specification and for the functional relationship between objects.

The workflow of record and reuse is also similar to that of the
programming by demonstration (PbD) paradigm [15], where ma-
chines learn the task model from users’ task performances (e.g.,
pick-and-place an object, navigate on a smart phone). Many prior
systems, such as Rousillon [10] and Sugilite [40], have built on
this paradigm to lower users’ efforts in domain-specific task pro-
gramming. Umitation also draws lessons from this paradigm and
explores the design space of UI behavior example retargeting, with
focuses on ease of use and user intent disambiguation.

3 UMITATION
With the three design goals introduced above, we created Umitation
to help designers experiment with UI behavior examples found
on other websites (the source website) on their own website (the
target website) during web UI prototyping. Instead of inspecting
the implementation or reinventing the code from scratch, they use
Umitation to record how an element behaves and extract it into a
self-contained behavior object. Once this is complete, they can edit
the extracted behaviors to contextually experiment with them on
their target website. In this section, we first illustrate the experience
of using Umitation with a sample usage scenario that embodies
many of the common UI behaviors found in prior work. We then
detail the design and implementation of Umitation.

3.1 The Umitation User Experience
Sophie, a professional web interface designer, is in the middle of
designing a website that already has some content and behaviors.
Now she wants to make the site more engaging by adding two
dynamic UI behaviors: 1) dropdown effect—when hovering over
the dropdown menu, the dropdown list will appear with an ani-
mated effect, and 2) scroll progress—the progress bar on the top
of the website will indicate the current scrolling percentage2. She
decides to use Umitation to leverage some example behaviors that
she has already found. Sophie first clicks the Chrome extension
on her browser to start Umitation. Similar to a text copy-paste
function, Umitation prompts her to first select the elements that
she is interested in copying on the source website: the dropdown
menu list element and the progress bar. She then clicks the “Record”
button (Fig. 2.A) to record a demonstration of her pointer hovering
over the menu button to trigger the dropdown list animation and
the act of scrolling down the website from top to bottom. Once
finished, she sees three rows added to the table on Umitation’s main
panel (Fig. 2).

To understand these example behaviors, Sophie first reads their
descriptions (Fig. 2.E) and quickly scans through the basic elements
of each behavior, including the trigger and trigger objects (Fig. 2.F)
and the screenshots of the response object (Fig. 2.G) to understand
the overall structure of the behavior. Then she analyzes the attribute
relationship charts between the trigger object and response object
(Fig. 4.H4) to see if they match the way she thinks the object should
behave. By hovering over the points on each chart, she reads the
values of the associated attributes. By clicking on the pre-built

2Similar to the top progress bar behavior on webflow.com/blog/parallax-scrolling
while scrolling

functions, she modifies the extracted behaviors that she wants to
test on her own website.

For the dropdown list behavior, Sophie is not sure if the extracted
behavior will fit well on her website, so she decides to experiment
with different variants to see which one is the most suitable. She
clicks the “Variant” button (Fig. 2.H,) and sees a prompt (Fig. 2.J)
that requires her to specify the number of variants and asks whether
she wants to use pre-defined interpolation functions using the start-
ing and ending points of the extracted value. She types the number
three to create three variants and uses pre-defined interpolation
functions, and Umitation adds three items on the “Others” column
(Fig. 2.I) for the transformed attributes.

For the progress bar behavior, Sophie sees that the unit of the
width is in pixels on the attribute relationship chart (Fig. 4.H4), but
she finds it easier to think of the change in terms of a percentage.
Therefore, she clicks the dropdown menu (Fig. 4.H3) and selects
% as the unit. Immediately, Umitation prompts her to go back to
the source website to select the element for which the width will
be used as the percentage total. Sophie goes back to the source
website and selects the progress bar’s background DIV, and the
chart updates its y-axis by dividing the original width value by the
width of the selected DIV.

To retarget the progress bar behavior to her website, Sophie
first clicks the checkbox on its behavior row (i.e., Behavior 2) and
clicks “Manually Select” (Fig. 2.C). Following Umitation’s step-by-
step instructions, Sophie goes to the target website and selects the
corresponding progress bar and background elements. By scrolling
down the page, she sees how the progress bar synchronizes with
the percentage of page scrolling. By reselecting the background
element, she sees how the progress bar’s maximum value changes
accordingly.

Similarly, for the dropdown menu behaviors, Sophie clicks the
checkbox on the two dropdown menu animation behavior rows
(i.e., Behavior 1, 2) and clicks “Auto Match” (Fig. 2.B) to save herself
the effort of matching multiple behaviors. Once she has switched
to her own website, Sophie is asked whether she wants to apply the
variants to similar elements that were detected by the system. After
confirming that option, she sees that the four different dropdown
menu behaviors (the original one and the three variants) are added
to the four dropdown menu buttons (Fig. 6.B). She hovers over each
menu and views the different effects. After comparing these vari-
ants, Sophie decides she likes variant number three the best, so she
records a short video to demonstrate the high-fidelity UI behavior
and sends it to her teammates for feedback and implementation.
All her extracted example behaviors were stored in Umitation and
will continue to work even if their source websites change.

3.2 Design and Implementation
We implemented Umitation as a Chrome browser extensionwith 2,000
lines of JavaScript code. Primarily, we used jQuery to ease ele-
ment selection and widget creation, Web APIs to watch for element
changes and user input events, and a few other third-party libraries
and scripts which we describe below. The next sections describe
the major steps of the system workflow.

webflow.com/blog/parallax-scrolling

Umitation: Retargeting UI Behavior Examples for Website Design UIST ’21, October 10–14, 2021, Virtual Event, USA

 A B C D

 E F G H I

 J

Figure 2: Umitation’s main panel (Step 2 in Fig. 1). The major view on this panel is a table that serves as a behavior clipboard,
with each row showing one attribute change and each column (E-I) showing one interaction detail. A user can edit each interac-
tion, such as the trigger (F) and the response relationship (H); select a subset of behaviors to retarget by clicking the checkbox
on each row (E); search behaviors via their natural-language description (D); or create variants of one attribute (I,J). The user
can let the system find structurally similar elements to apply the selected behaviors (B) or manually select their own (C).

3.2.1 Step 1: Recording behaviors on existing interfaces. To extract
an example behavior, users can follow Umitation’s contextual-
ized instruction (Fig. 3) after initializing the system by clicking
its Chrome extension icon. The contextualized instruction design
aims to disambiguate user intent when selecting the relevant ele-
ments, and it also acts as a memory aid for the use of Umitation.
Specifically, to aid the selection, Umitation adds a red dashed border
to any HTML element that the users hover their mouse over (Fig. 3
A, B). Users can press the “R” key to select the response object and
“T” to select the behavior trigger object. In the dropdown list exam-
ple, the trigger object is the navigation menu button “Blog,” and
the response object is the dropdown list. Once selected, a solid blue
border will be added to these elements as selection confirmation
(Fig. 3 B). To extract the behavior, a user must initiate the recording
(Fig. 2.A), hover over the menu button, and wait until the dropdown
list’s animated behavior is complete (Fig. 3 C, D). Upon finishing
the demonstration, the user stops the recording, and the system will
extract the recorded behaviors. This process keeps users’ attention
on the visual aspects of the UI, which requires less navigation effort
and saves significant time and effort when compared to searching
the source code to learn and modify the relevant code—which the
users might not be able to find or understand.

During the recording, Umitation tracks the CSS attribute and an-
imation changes on the selected elements (e.g., style, animation)
using multiple Web APIs such as MutationObservers (e.g., Mu-
tationObserver.observe(elementNote, config)), and Element (e.g.,

elementNote.getAnimations()).3 Umitation also injects three
commonly used event listeners to the trigger elements, including
mouseenter, mouseleave, and click. By default, Umitation uses
the window object as the trigger object (if the user does not select
one), and it tracks multiple window object parameters including
page scrolling percentage, window width, and window height. Fi-
nally, Umitation stores the timestamps along with all of the changes.
Future work can expand the number of attributes and listeners to
track additional changes (e.g., keyup).

Unlike previous systems such as Theseus [41] or Telescope [23]
that help users to discover the implementation of interactive be-
haviors, Umitation reverse-engineers the observed changes, which
bypasses the need to search through multiple function calls across
many files. However, it is limited to elements’ visual changes that
can be observed from a user demonstration. Additionally, it does
not infer any backend implementation, which may lead to inac-
curate extraction (e.g., live data that updates the element’s color
value). We discuss these limitations in later sections.

3.2.2 Step 2: Viewing and editing behavior details. To make the
behaviors easy to understand (DG2), Umitation decomposes each
behavior into four distinct components: trigger, trigger object, re-
sponse, and response object. The trigger object and response object
can be one or more HTML elements. The trigger and response can
be a discrete event, such as a click action or an element’s immediate
appearance, or it can be a continuous event, such as a web page

3https://developer.mozilla.org/en-US/docs/Web/API

https://developer.mozilla.org/en-US/docs/Web/API

UIST ’21, October 10–14, 2021, Virtual Event, USA Yan Chen, et al.

 A

 B

 C D

Figure 3: Step 1 of using Umitation. Users follow the instructions on the floating window to select the trigger and response
elements (A, B). Then they can record a demonstration of the behaviors that they want to extract (C, D).

scrolling or an element rotating. Furthermore, the relationship be-
tween the trigger object and response object can also be dynamic,
such as a bar progressing linearly as the page scrolls down. To
help users easily analyze the captured behaviors, we have adopted
spreadsheet-like UIs from many prior systems [9, 44] and present
detailed information about the extracted behaviors in a table, with
each row showing one attribute change and each column showing
one interaction detail, as explained below:

Select: An index of behaviors that users have selected. It can be used
as a reference when retargeting to the target website. A template-
based natural-language description of the behavior is also provided
(e.g., when [trigger] the [trigger object], then the [response at-
tribute] of [response object] changes [dynamically/immediately]).
This is designed to help users easily grasp the high-level details
of the behavior and enable the behavior search function (Fig. 2 D).
More advanced NLP techniques could be applied in the future to
detail the behavior description (e.g., how it changes).

Trigger: The user input event that triggers the behavior. Umita-
tion supports the four most common kinds of user input events,
including scrolling, resizing, clicking, and hovering (see Step 1 for
implementation details on tracking each). To add expressiveness,
Umitation also allows users to switch from one trigger to another
from the dropdown menu when applying each behavior. Umita-
tion applies each trigger on the target website using pre-defined
JavaScript functions. For instance, if the trigger is scrolling, Umita-
tion will add a .scroll() or .click() event listener to the trigger
object and then add the behavior in the callback functions.

Trigger Object: The HTML tag of the source website element on
which the trigger is applied. By default, this object is the window
element because two of the triggers—scrolling and resizing—are

commonly applied on the window object. To specify the trigger
object, users can change the object from this default when experi-
menting on the target website.

Response Object: The screenshot of the object on which the be-
havior happens. Using a third-party script,4 Umitation captures the
element node screenshots after the user selects them in Step 1. This
helps users more easily differentiate between multiple behaviors
displayed on the panel. Users must always choose the response
object on the target website when experimenting.

Response: Detailed information about the response behavior, in-
cluding the changed attribute (Fig. 4.H1), the simplified representa-
tion of the behavior (Fig. 4.H2), and an attribute relationship chart
to show the connection between the changing values of the trigger
object and response object or the behavior transition (Fig. 4.H4).
The changed attribute shows the associated CSS attribute name,
such as transition, width, or opacity. Umitation currently does not
support 3D-translated attribute tracking, as it is difficult to visu-
alize this in a 2D chart. Future work can study optimal ways to
visualize changes on more CSS dimensions so that users can easily
understand and modify them.

The simplified representation of the behavior uses an empty
square to represent the response object (Fig. 4.H2). Umitation is
designed to visualize two forms of representation: the start/end
response object states, and the behavior transition (i.e., how the
response object changes from the start state to the end state). We
use an empty square instead of the response object screenshot
because the response object can be arbitrarily complex (e.g., an
entire page), which might distract users from the actual response. In
addition, if the response behavior is a change in size, the content of
a screenshot will be skewed (e.g., the text content will be distorted).

4https://html2canvas.hertzen.com/

https://html2canvas.hertzen.com/

Umitation: Retargeting UI Behavior Examples for Website Design UIST ’21, October 10–14, 2021, Virtual Event, USA

H1

H2

 H4

 H3

Figure 4: Two visual representations of discrete and contin-
uous UI behavior. 4a is the attribute name. 4b represents the
start and end state of the UI. 4c is a dropdownmenu that sup-
ports unit switching between pixel and %. 4d is a functional
relationship chart the shows either the start and end state
(top) or the continuous connections between the trigger ob-
ject and response object.

This design is inspired by Tufte’s minimalism theory for effective
information visualization [57]. For example, the relationship chart
on the first row in Fig. 2.H shows the start state (i.e., translateX
and translateY both have values of 200px) and the end state (i.e.,
translateX and translateY both have values of 0px). To further help
users understand this behavior, the relationship chart on the second
row plays a looping animation to present an easing function effect.

The design of the attribute relationship chart for the two objects
is inspired by prior work in dynamic illustration [26]. Users can also
change the extracted relationship for their purposes. Prior work
has also shown that creating functional relationships in this way
is more intuitive for users without requiring any programming or
scripting. Users can create alternative relationships between the
objects by using five pre-defined functions (commonly used easing
functions5) to interpolate the start and end attribute values of the
response object: reverse, linear, ease in, ease out,
ease in and out, (from left to right, top to bottom), and reset the
chart to its original. When clicking these buttons, the chart will
update its drawing in real time.

One common aspect of UI behavior is that the attribute values
will change in % rather than pixels (e.g., in progress bars). However,
by default, Umitation captures the pixel values of the following
attributes: width, height, left, and top. To consider both cases, Umi-
tation allows users to switch between pixels and % by guiding them
to specify the percentage total. When the attribute is one of those
5https://developer.mozilla.org/en-US/docs/Web/CSS/easing-function

four mentioned above, a dropdown menu appears next to the at-
tribute information (Fig. 4.H3), allowing users to click it to select
their preferred unit. Then Umitation will ask users to go back to
the source website and select the element for which the width will
be used as the percentage total. Once the user selects an element,
the chart will update its value to reflect the new calculation (i.e.,
dividing the original width attribute values by the percentage total
and then multiplying by 100).

Others: A list of variants that the user has created for this be-
havior. This feature is to help designers easily experiment with
multiple versions of behaviors of the same attribute (DG3). The
design of this feature is guided by work done in the alternative
design space where systems can auto-generate a set of similar ver-
sion instances to provide more design options for users [47, 51].
Users can request that the system auto-generate up to five alter-
native versions of this behavior. Each new version has a different
functional relationship between the response and trigger object.
Umitation generates these alternative behaviors using the five pre-
defined interpolation methods introduced in the chart manipulation
above, in which it applies these functions to the recorded start and
end attribute values of the response objects. The generation order
(i.e., which version is created first) is also based on the function’s
popularity: reverse, linear, ease in, ease out, and ease in and out.
Users can create variants of one attribute by first clicking the
button and then specifying the number of variants they want to
create. Each variant is numbered for easier differentiation (i.e., <Be-
havior_index.variant_cardinal_number>, such as 0.0 for the first
behavior and first variant). Once the variants have been created
and listed, users can see the relationship reflected in the chart in
the “Response” column by clicking the icons next to the behavior’s
name. More interactive and mixed-initiative approaches can be
applied in future work to enhance the system’s expressiveness.

3.2.3 Step 3: Experimenting with example behaviors on target web-
sites. To easily experiment with the extracted behaviors on other
interfaces (DG3), Umitation supports two methods of retargeting
the example behaviors. The first mode is “Manual Select,” (Fig. 2.C)
in which users will manually specify the target trigger objects and
response objects to adapt the behaviors. Similar to Step 1, Umi-
tation provides contextualized instruction to help disambiguate
user intent when selecting the target elements. The second mode is
“Auto Match,” (Fig. 2.B) in which Umitation will automatically find
structurally similar elements between the source and target web-
sites to adapt the behaviors. We adapted and modified a matching
algorithm [21] that could automatically find similar elements using
the differences in four attributes: width, height, top, and left (we la-
beled these dimensions as obj1 and obj1’ in Fig. 5). In contrast to the
original algorithm, we used the relative values of these attributes
to those of the window object (see details below, e.g., width1 is 18%
of the screen, left1 is 20% of the window view port). We use the
relative values rather than absolute ones because the scale of the
two interfaces might be different when computing their similarity
(e.g., when resizing), and because a user’s current viewport position
relative to the overall HTML page might also be different (e.g. with
the original algorithm, a source web page may have fit into one

https://developer.mozilla.org/en-US/docs/Web/CSS/easing-function

UIST ’21, October 10–14, 2021, Virtual Event, USA Yan Chen, et al.

Figure 5: Screenshots of the source (left) and target (right) websites that show the two structurally similar elements, which
are obj1 and obj1’, respectively. Umitation uses four element attributes to compute the difference between objects: left, top,
width, and height. Once a similar element is found, a reselection button (red cross) and all the behavior buttons (yellow) will
be added to help users experiment more efficiently. Additionally, on the target website, Umitation also searches elements with
the same class name (the elements in green dashes) as the chosen one (the element in orange dashes).

view port, but this may not have been the case on the target web
page).

Umitation uses a cost function 𝑓 (eq.1) to compute structural
differences between a pair of elements, where 𝑜𝑏 𝑗 and 𝑜𝑏 𝑗 ′ are
HTML elements in the source and target websites, respectively.
𝑓 (𝑜𝑏 𝑗, 𝑜𝑏 𝑗 ′) is the sum of the differences between four object at-
tributes, which is denoted as 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 . It consists of the object’s
relative values—left, top, width, and height—which are computed
as shown below:

- left: element.getBoundingClientRect().x / document.body.clientWidth

- top: element.getBoundingClientRect().y / document.body.clientHeight

- width: element.clientWidth / document.body.clientWidth

- height: element.clientHeight / window.innerHeight

𝑓 (𝑜𝑏 𝑗, 𝑜𝑏 𝑗 ′) =
∑

∥𝑜𝑏 𝑗 .𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 − 𝑜𝑏 𝑗 ′.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∥ (1)

Umitation performs a breadth-first search starting from the body
element on the target website to retrieve each object’s values. From
this point, it computes each element’s cost function against the
selected ones from the source website (i.e., obj in eq. 1), ranks the
elements based on these computations, identifies the elements with
the smallest values (i.e., the elements most similar to the element
on the source web page), adds a dashed-line box to them (Fig. 5
the orange dashed-line box around obj1’), and finally applies the
selected behaviors. Note that we did not use the element’s type
attribute (i.e., element.tagName) as one of the factors. This is be-
cause we found that 1) many widgets share visual structures but

not types6; and 2) developers sometimes define custom elements7,
making type information less useful.

Additionally, Umitation adds a few buttons to the top-left corner
of the element (Fig. 5 the two circled buttons on the top-left corner
of obj1’) to allow users to cancel and reselect (red X) and to switch
the behavior on and off (yellow is on, and gray is off). This design
allows users to effortlessly perform in-context “trial and error,”
iteratively aligning their design intent and the adapted behaviors.
The number on the buttonmatches their behavior index on themain
panel. The system also supports group matching, which applies the
same behavior to all elements with the same class name (i.e., the
five similar card elements in Fig. 5). This design was used because
many widgets appear as a group, and so applying a behavior to the
whole group helps users infer how they behave as a whole.

Umitation also allows users to apply variants of one behavior to
detected similar elements (Fig. 6.B). This design is inspired by prior
systems such as Juxtapose [19] and Variolite [27], in which users
can easily navigate between versions with browser-tab-like UIs,
helping users efficiently compare different behaviors by reducing
the effort of navigation and switching between interfaces. Note that
when there are more variants than the number of similar elements
on the target web page, Umitation will only apply new behaviors
to the available elements (i.e., if users apply five variants to Fig. 6,
only the first three will be adapted because there are only three
elements on which to transfer the new behavior).

6Dropdown menu buttons and their lists on these sites are: a) https://chi2020.acm.org/:
, ; b) https://www.clickandrent.fr/: <div>, <nav> (used in study); c) https:
//www.figma.com/: <button>, <div>
7https://angular.io/guide/elements

https://chi2020.acm.org/
https://www.clickandrent.fr/
https://www.figma.com/
https://www.figma.com/
https://angular.io/guide/elements

Umitation: Retargeting UI Behavior Examples for Website Design UIST ’21, October 10–14, 2021, Virtual Event, USA

 A B

Figure 6: Two forms of experimenting with multiple versions of behavior. A is to experiment all behaviors on one button; B
is to experiment each on one button, which helps save the time of toggling each on and off.

In summary, Umitation supports retargeting interactive behav-
iors with user inputs that are either continuous (e.g., scrolling,
resizing, scrubbing) or discrete (e.g., clicking, hovering), and with
behaviors in which the changing relationship between the trigger
object and response object is dynamic (e.g., easing in and out).

4 SYSTEM EVALUATION
We conducted a remote user study to evaluate Umitation’s usability
and efficiency at helping users to extract and retarget UI behavior
examples. This evaluation was guided by the usage evaluation in
the HCI toolkit evaluation strategy classification [35]. Our goals
were to 1) observe and assess how UI designers use Umitation to
retarget UI behavior examples from one interface to another, and
2) examine the qualitative usability and utility of Umitation.

A within-subject experiment would have been difficult because
there is no clear baseline to compare to Umitation. As we discussed,
the most common practices for retargeting UI behaviors are us-
ing either professional tools, which do not offer sufficient support
for importing and exporting interface assets and therefore cannot
handle late-stage UI development; or web programming, which
requires participants to know or learn how the task interfaces were
implemented. Instead, we asked participants to estimate their work-
flow times as if they would have to perform the same tasks in our
user study with their own tools or systems of choice.

4.1 Participants
We recruited 8 participants (4 women, 4 men, ages 21-38) from
both a local participant pool and a freelancer platform. Two of
the participants were professional UI designers, and the other 6
were undergraduate or graduate students from multiple schools.
All participants had at least one year of UI design and development
experience. All of them had experience with CSS/HTML/JS and
Chrome DevTools for web interface design; 4 listed professional UI
design tools as part of their common practice, including Figma and
Adobe XD. Each participant was compensated $20 for their time.

4.2 Study Design
The remote study session with participants lasted 50-70 minutes.
After agreeing to the consent form, each participant first watched
a tutorial video of Umitation that showcased the system’s features,
and then the participants replicated the example seen in the tutorial.
They then performed five tasks (see details in the Tasks section
below) using Umitation. For each task, the participants first watched
a video that included a demonstration and verbal explanation of
the example UI behaviors from the source website and the needed
behaviors on the target websites. Then they performed the tasks

using Umitation, and the experimenter checked the completion
of the task. After the evaluations, the participants reported their
demographic information, and we also conducted a short interview
with them regarding their experiences with Umitation.

Due to the COVID-19 pandemic, the study was performed re-
motely using Zoom video conference software. Umitation ran on an
experimenter’s laptop. Although it is possible that participants may
have experienced minor network delay, we believe the results are
still valid for fulfilling the two evaluation goals. The participants
were asked to remotely control the laptop using Zoom to perform
all of the tasks. They could access the task video at any time, and
they could also request the experimenter’s assistance throughout
the session. The experimenter’s screen and the interview audio
were recorded for each session.

4.3 Tasks
Table 2 shows the details of our user study task information. Because
one of our goals when evaluating Umitation was to examine the
qualitative usability and utility of the system, we created the study’s
five tasks with three further objectives in mind: the UIs should
look realistic, the UI behaviors should include critical and low-
level details that are often omitted when specifying interactive
behaviors in practice [38], and the tasks should help to demonstrate
Umitation’s full capability, which existing tools cannot easily do (in
terms of complexity and diversity) [48]. To achieve these objectives,
we used two professional websites (Clickandrent8 and BakerStreet9)
to be the source websites and two additional websites (Webflow10

and Portfolio11) to be the target websites. We modified their UIs
to result in behaviors that are highly dynamic and type-diverse:
multiple elements that respond to user input, multiple attribute
changes on one element, user inputs that are either continuous (e.g.
resizing) or discrete (e.g., mouse hover), and attribute value changes
that can be either relative or absolute (see Supplemental Materials
for screenshots of the task interfaces).

4.4 Results
4.4.1 Time and Accuracy. Of the 40 scenario instances (8 partici-
pants x 5 tasks), the participants successfully completed all of them.
Table 2 lists the average time (in seconds) each participant spent
working and the number of times they received assistance across all
five tasks. Of these forms of assistance, more than half of them were

8https://tinyurl.com/3uj2yvux
9https://tinyurl.com/ewun2pmh
10https://tinyurl.com/3zzjtzdd
11https://tinyurl.com/6r822vwx

https://tinyurl.com/3uj2yvux
https://tinyurl.com/ewun2pmh
https://tinyurl.com/3zzjtzdd
https://tinyurl.com/6r822vwx

UIST ’21, October 10–14, 2021, Virtual Event, USA Yan Chen, et al.

Task Description Example Web UI Use of Umitation

1 Click the button, and the page
scrolls to the top with an ani-
mated effect.

A long list of items or members to dis-
play (e.g. www.uist.acm.org/uist2021/
organizers.html).

Help selecting the desired button be-
haviors (one button can have multiple
behaviors associated with the clicking
event).

2 Resize the window horizontally,
and the size of a set of similar
elements changes together con-
tinuously.

Similar items such as shopping items
have the same size-changing responsive
effect when resizing the window (e.g.,
ebay.com).

Help specifying desired elements by au-
tomatically finding structurally similar
elements during Step 1 (selecting ele-
ments to extract behavior) and Step 3
(selecting elements to adapt behaviors).

3 Resize the window horizontally,
and the sizes of multiple differ-
ent elements change continu-
ously.

Multiple different elements such as the
side bar, navigation bar, and items have
different responsive effects when resiz-
ing the window (e.g., nytimes.com).

Help specifying multiple desired ele-
ments by automatically finding multi-
ple structurally similar elements during
Step 3 (selecting elements to adapt be-
haviors).

4 Hover over the navigation
menu, and the dropdown menu
appears with an animated
effect.

Experimenting with different animated
effects on the dropdown menu list’s ap-
pearance (e.g., youtu.be/AIdslaUj9wg?
t=1270).

Help testing various behavior appear-
ances of different dropdown menus
found on the target websites.

5 Scroll down the page, and a
progress bar changes continu-
ously.

A fixed-position progress bar that
changes its percentage accordingly as
users scroll the page (e.g., the progress
bar on any paper page on https://dl.acm.
org/conference/uist).

Help with identifying and specifying
the units of the attribute values in the
extracted behavior, and selecting the el-
ements accordingly (e.g., the progress
bar or the progress bar background).

Table 1: The five UI behavior tasks users retargeted in the user study. First column: task index; second column: the task de-
scription we gave to participants in our study; third column: example UI behaviors that were used on existing professional
websites; fourth column: their corresponding use with Umitation.

requests for memory aid (e.g., the participants jumped ahead or for-
got the next steps of the workflow); two participants did not quite
understand the rationale behind the percentage (relative value) vs.
the pixel (absolute value). When asked to reflect on their experience,
the participants all mentioned that once they became familiar with
the tool later in the session, they could easily perform all the tasks.
We also asked the participants to report the estimated time they
would have spent on the same tasks with their current practices
(i.e., without using Umitation). Three participants reported days
(P2, P4, P8), three reported hours (P1, P3, P5), and two reported 30
minutes or less (P6, P7).

4.4.2 Usability and Efficiency. After the study, the participants
rated Umitation’s ease of use and efficiency on a seven-point Likert
scale from “strongly disagree” to “strongly agree.” Umitation scored
on average 5.7 (SD = 0.92) on “I found Umitation ease to use.” Partic-
ipants reported that they found Umitation to be “easy to use” (P1, P3,
P6) and “easy to understand” (P5, P7), and that they found that the
real-time guidance, such as the floating instruction window (Fig. 3.
A, B), made the workflow straightforward (P6). “For the Auto Match
feature, the first time I used it, it was exactly how I imagined it would
be” (P5). Umitation scored on average 6.1 (SD=0.3) on “Umitation
is efficient in helping me with retargeting UI behavior examples
compared to existing tools I’ve used before,” and participants found
it to be “very useful” (P5).

In summary, participants found Umitation to be a “powerful tool”
(P5) with a low learning threshold to users but high expressiveness
(P2), and they stated that it was “really good at interaction (behavior)
type of tasks” (P7). In particular, we found that Umitation helped
designers to easily extract any UI behavior examples by enabling
them to directly interact with the interfaces to demonstrate the de-
sired behaviors, to understand complex UI behavior by unpacking
the behavior via tables, and to intelligently guide users to specify
their intent by automatically matching and supporting variant com-
parisons. In the followup interviews, participants reported their
thought process while using Umitation and how they compared
Umitation to their current practices.

4.4.3 Learning Effort. Compared to their current practices, all par-
ticipants stated that Umitation made the example behavior learning
process much easier. “The biggest advantage is it’s very visual and
non code-base[d]. If I’m just a designer, and I don’t know anything
about the coding part, it’s very user-friendly, where you see the be-
havior[s] that you want, and then you copy and paste them” (P4).
Learning UI behaviors on existing websites can be burdensome
for designers, who must inspect the relevant source code to locate
and understand the implementations. Not only does this process
shift their attention away from the visual and dynamic aspects
of the behavior itself, but understanding other developers’ code,

www.uist.acm.org/uist2021/organizers.html
www.uist.acm.org/uist2021/organizers.html
ebay.com
nytimes.com
youtu.be/AIdslaUj9wg?t=1270).
youtu.be/AIdslaUj9wg?t=1270).
https://dl.acm.org/conference/uist
https://dl.acm.org/conference/uist

Umitation: Retargeting UI Behavior Examples for Website Design UIST ’21, October 10–14, 2021, Virtual Event, USA

Task index Completion time (Avg. in sec. (S.D.)) # of assistance

1 114.3 (63.2) 2.0 (1.3)
2 209.5 (88.9) 1.0 (1.1)
3 74.4 (35.0) 0.9 (0.8)
4 208.4 (152.4) 0.9 (0.6)
5 185.4 (139.0) 0.5 (0.8)

Table 2: Average time spent (sec.) on each task and the number of times that participants received system usage hints from
the experimenter.

Question 7-point Likert scale response (Avg. (S.D.))

Umitation is easy to use 5.1 (0.8)
Umitation is efficient at helping me complete the tasks 5.8 (1.0)

Table 3: Average Likert scale responses by the eight participants for two questions regarding Umitation’s usability and effi-
ciency.

which might not be well-formatted or explained, can be a complex
task [58].

Umitation removes these burdens by enabling designers to record
and reuse what they see without having them to dig into the source
code. Similar to prior work that argues that element-based anima-
tions should be treated as first-class objects [11], Umitation treats
each UI behavior as a first-class object, where the low-level details
such as triggers and responses are its attributes. This allows de-
signers to focus on only the visual and interactive aspects of the
behaviors, making the extraction process easier.

4.4.4 Behavior Understanding. Similar to the clipboard feature on
any modern text editor, the extracted behaviors are saved temporar-
ily on Umitation’s control panel. However, unlike the traditional
content copy-paste techniques where users would know exactly
what was copied to their clipboard, the complex UI behaviors often
consist of multiple attribute changes. In our study, we found that
Umitation helped participants to clearly see and understand these
changes in detail. “I was expecting maybe like one behavior, but
there ended up to be four. So there are some ones that maybe I didn’t
even notice [were] present in the original source” (P6). Systems like
Telescope can help easily find relevant code, but for complex UI
behaviors, simply having the code might not be enough for users
to quickly grasp the relationship between different components
within the behaviors. “The visual representation of it is much nicer,
because you can immediately see [that] this is the linear process for
this example. I think if it’s just written in code, it can be confusing
to visualize sometimes, but because you’ve got that graph, it’s much
easier” (P3). Additionally, Umitation helped designers to learn about
the extracted behaviors by making them editable and interactable
on its system panel. “I really like how things are presented in columns
where I can scan through each of them to compare and find the infor-
mation on the same category” (P4). Furthermore, via manipulation
of the details of the behavior, Umitation helped designers to easily
explore and express their design ideas (e.g., create variants) rather
than relying on the exact same behaviors that were in the source
website, making the design process more expressive and scalable.

4.4.5 Scalability. An important step in the UI design process is to
compare different versions of a design to see which one fits better
in context [50]. By adding the multi-version tab buttons on the
target elements, Umitation eased the process of switching between
versions, helping participants make decisions more efficiently. “I
would personally use it to help make design decisions. Or [when]
there are multiple ways in which I’d want a website to behave and I
can’t decide between them” (P3). Additionally, with the structurally
similar element matching technique, Umitation intelligently guided
users to specify and disambiguate their intentions, which limited
the effort of manually choosing which elements to extract and
match.

4.4.6 Team Productivity. Half of the participants also noted an ad-
ditional benefit: Umitation can help users communicate UI designs
to others, allowing users to get feedback or showcase their ideas
in a contextualized way. “Communicating verbally or pointing to
reference websites might be less effective than this tool” (P2). As prior
work has shown [12, 13, 32], presenting contextualized visual infor-
mation helps people ground communication. “When you’re trying
to explain these kinds of things to other people, like developers, for
instance, or your designer, you might point to other websites, and like
[say] ‘please do something like that.’ And then it might not work or
[the result] might be quite different from [actuality] in this context”
(P8).

5 DISCUSSION
The study results have shownUmitation’s promise and effectiveness
in helping designers experiment with example UI behaviors within
minutes. By offering contextualized guidance to help users specify
coding details, Umitation allows designers to avoid the effort of
implementing complex behaviors themselves, thus providing a low
barrier to entry. Essentially, Umitation provides what David Kelley
terms “enlightened trial and error,” in which prototypes can be
more fluidly produced and evaluated. We now discuss Umitation’s
role in the design lifecycle, system limitations, and areas for future
research.

UIST ’21, October 10–14, 2021, Virtual Event, USA Yan Chen, et al.

5.1 Umitation’s Role in the Design Lifecycle
Our user study has demonstrated Umitation’s strength in support-
ing retargeting complex and dynamic UI behaviors from one inter-
face to another, but participants also mentioned that Umitation can
be used at the initial stage of the design process, as referring to exist-
ing designs found in the wild is a common practice throughout the
design lifecycle. Unlike the basic, single function copy-and-paste
tool found in many devices, Umitation allows designers to collect,
store, manage, and retrieve (Fig. 2.D) example behaviors, serving
as an example library for future usage or sharing with others. Ad-
ditionally, the extracted example behaviors will continue to work
even if the source website changes.

5.2 System Scope and Study Limitations
Umitation was designed to capture/adapt “front end” visual be-
haviors that occur within the DOM tree of a Website. It was not
designed to and cannot capture a behavior’s underlying compu-
tational functions. For instance, UM could cover the visualization
of password strength, but not the functionality that assesses its
strength (2AC). Umitation is most effective at retargeting dynamic
UI behaviors that involve dynamic transformation across multiple
CSS attributes of multiple interface elements. It is less necessary for
simple attribute changes, such as width or color changes that occur
after clicking a button, as this relevant code would be easy to find.
Our matching algorithm could be improved to cover more complex
cases. For instance, an earlier version of Umitation had the ability to
search for matches within a user-specified region of the target site,
although our initial pilot studies suggested that manual selection
would suffice. Our system evaluation is also limited because no
baseline was used for comparison. In addition, the tasks used in
the study were not from the real world. Ideally, we would want the
participants to use Umitation for their own design projects.

Our study also revealed multiple system limitations. First, when
specifying elements on the source website (Step 1), Umitation re-
quires users to manually select accurate elements that will respond
to their input. If users incorrectly select specific elements, Umitation
does not provide any feedback or guidance to help correct them. For
instance, one participant (P4) first selected the entire source page in
one task and wanted to avoid the low-level “tedious” process of find-
ing the correct element from which to extract behaviors. Second,
when first reading and analyzing the behaviors (Step 2), partici-
pants felt “overwhelmed” (P5, P6) by the amount of information
presented in the table. Their initial feeling of being overwhelmed
might have also resulted from the Umitation’s unfamiliar visual
representations, which might have been new to designers who were
more familiar with the traditional canvas-editor-based representa-
tion. Third, when applying the behaviors to the target website (Step
3), Umitation requires the target elements to be visible such that
they can be used as target objects for the behaviors. Furthermore,
Umitation cannot display accurate example behaviors on the target
elements if there are other effects or constraints that cannot be over-
written. In other words, Umitation cannot combine the extracted
behaviors with the existing ones on the same attributes; rather, it
overwrites the original behaviors.

5.3 Future Work
Participants provided suggestions on improving Umitation’s effi-
cacy and usability. Two participants were curious about ways they
could implement the example behaviors after retargeting them via
Umitation. While Umitation does not trace the source code of the
original implementation, future work can display the synthesized
code snippets that generated the retargeting effects, which prior
work has shown to help users implement the behaviors in their
own codebase [8]. Although Umitation cannot capture a behavior’s
underlying computational functions, prior work such as Fusion [60]
has already presented techniques to support that function. Future
work could combine these systems to support a wider range of UI
retargeting tasks than either could alone. We also plan to explore
techniques in the program synthesis literature [28, 59] to help users
to efficiently integrate the code snippets of the extracted behaviors
into the source code of the target website.

Additionally, we observed that when choosing elements from
which to extract or adapt example behaviors, three participants
first selected those that contained other unintended elements (e.g.,
the entire body element). One participant expressed that “it would
be really nice if you could extract and adapt the behaviors of the en-
tire website” (P4). This preference makes sense because identifying
the exact elements can be tedious. Similar to Bricolage [33], fu-
ture systems could design models to predict the intended behavior
match without relying on a user’s manual specification. Because
Umitation is still a research prototype, it has not yet been engi-
neered with robust system recovery mechanisms. During the user
study, participants would restart Umitation when encountering
unexpected system states (e.g., after capturing the entire source
page’s behaviors). Future work could add guidance to help users
repair system breakdowns, or introduce an error message system
to help users better understand the system states.

6 CONCLUSION
In this paper, we introduced an easy and expressive approach for
UI designers to retarget example behaviors found in the wild to
their own interfaces. We designed and developed Umitation, which
instantiates this approach, to enable users to extract example UI
behaviors, modify and remix them, and retarget them to different
interfaces. Participants found Umitation powerful and intuitive and
expressed its high efficiency compared to their existing practices,
such as programming. Umitation is a first step in helping disam-
biguate user intent during the functional copy-and-paste process by
providing a natural and expressive method of retargeting dynamic
interface behaviors.

7 ACKNOWLEDGEMENTS
This research was supported in part by the National Sciences and
Engineering Research Council of Canada (NSERC) under Grant
IRCPJ 545100 - 18.

REFERENCES
[1] 2021. Microsoft Format Painter. https://tinyurl.com/afxc85n9 Accessed: April,

2021.
[2] 2021. Scrimba. https://www.scrimba.com/ Accessed: April, 2021.
[3] Margaret A Boden et al. 2004. The creative mind: Myths and mechanisms. Psy-

chology Press.

https://tinyurl.com/afxc85n9
https://www.scrimba.com/

Umitation: Retargeting UI Behavior Examples for Website Design UIST ’21, October 10–14, 2021, Virtual Event, USA

[4] Elizabeth Boling and Theodore W Frick. 1997. Holistic rapid prototyping for web
design: Early usability testing is essential. Web-based instruction (1997), 319–328.

[5] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
record/replay for web application debugging. In Proceedings of the 26th annual
ACM symposium on User interface software and technology. 473–484.

[6] Bill Buxton. 2010. Sketching user experiences: getting the design right and the right
design. Morgan kaufmann.

[7] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. 2019. Everybody
dance now. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 5933–5942.

[8] Kerry Shih-Ping Chang and Brad A Myers. 2012. WebCrystal: understanding
and reusing examples in web authoring. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 3205–3214.

[9] Kerry Shih-Ping Chang and Brad A Myers. 2014. Creating interactive web data
applications with spreadsheets. In Proceedings of the 27th annual ACM symposium
on User interface software and technology. 87–96.

[10] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 963–975.

[11] Yan Chen, Sang Won Lee, and Steve Oney. 2021. CoCapture: Effectively Commu-
nicating UI Behaviors on Existing Websites by Demonstrating and Remixing. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.

[12] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S Lasecki, and Steve Oney.
2017. Codeon: On-demand software development assistance. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. 6220–6231.

[13] Yan Chen, Steve Oney, andWalter S Lasecki. 2016. Towards providing on-demand
expert support for software developers. In Proceedings of the 2016 CHI conference
on human factors in computing systems. 3192–3203.

[14] Pei-Yu Chi, Sen-Po Hu, and Yang Li. 2018. Doppio: Tracking ui flows and code
changes for app development. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–13.

[15] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming
by demonstration. MIT press.

[16] Steven Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel Schwartz, and
Scott Klemmer. 2011. Prototyping dynamics: sharing multiple designs improves
exploration, group rapport, and results. In Proceedings of the SIGCHI conference
on human factors in computing systems. 2807–2816.

[17] Mary L Gick and Keith J Holyoak. 1983. Schema induction and analogical transfer.
Cognitive psychology 15, 1 (1983), 1–38.

[18] Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document workflow histories. In Proceedings of the
23nd annual ACM symposium on User interface software and technology. 143–152.

[19] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R Klemmer. 2007. Program-
ming by a sample: rapidly creating web applications with d. mix. In Proceedings
of the 20th annual ACM symposium on User interface software and technology.
241–250.

[20] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.
2008. Design as exploration: creating interface alternatives through parallel
authoring and runtime tuning. In Proceedings of the 21st annual ACM symposium
on User interface software and technology. 91–100.

[21] Yasunari Hashimoto and Takeo Igarashi. 2005. RetrievingWeb Page Layouts using
Sketches to Support Example-based Web Design.. In SBM. Citeseer, 155–164.

[22] Scarlett R Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P Bailey. 2009.
Getting inspired! Understanding how and why examples are used in creative
design practice. In Proceedings of the SIGCHI conference on human factors in
computing systems. 87–96.

[23] Joshua Hibschman and Haoqi Zhang. 2015. Unravel: Rapid web application re-
verse engineering via interaction recording, source tracing, and library detection.
In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. 270–279.

[24] Joshua Hibschman and Haoqi Zhang. 2016. Telescope: Fine-tuned discovery of
interactive web UI feature implementation. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology. 233–245.

[25] Yue Jiang, Wolfgang Stuerzlinger, and Christof Lutteroth. 2021. ReverseORC:
Reverse Engineering of Resizable User Interface Layouts with OR-Constraints. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–18.

[26] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice.
2014. Kitty: sketching dynamic and interactive illustrations. In Proceedings of the
27th annual ACM symposium on User interface software and technology. 395–405.

[27] Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3025453–3025626.

[28] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 140–151.

[29] Donghwi Kim, Sooyoung Park, Jihoon Ko, Steven Y Ko, and Sung-Ju Lee. 2019.
X-Droid: A Quick and Easy Android Prototyping Framework with a Single-App

Illusion. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology. 95–108.

[30] Huhn Kim and Wan Chul Yoon. 2005. Supporting the cognitive process of user
interface design with reusable design cases. International journal of human-
computer studies 62, 4 (2005), 457–486.

[31] Janet L Kolodner and Linda M Wills. 1993. Case-based creative design. AISB
QUARTERLY 85 (1993), 1–8.

[32] Robert E Kraut, Susan R Fussell, and Jane Siegel. 2003. Visual information as
a conversational resource in collaborative physical tasks. Human–computer
interaction 18, 1-2 (2003), 13–49.

[33] Ranjitha Kumar, Jerry O Talton, Salman Ahmad, and Scott R Klemmer. 2011.
Bricolage: example-based retargeting for web design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2197–2206.

[34] James A Landay and Brad A Myers. 1995. Interactive sketching for the early
stages of user interface design. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 43–50.

[35] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation strategies for HCI toolkit research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–17.

[36] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R Klemmer.
2010. Designing with interactive example galleries. In Proceedings of the SIGCHI
conference on human factors in computing systems. 2257–2266.

[37] Germán Leiva and Michel Beaudouin-Lafon. 2018. Montage: A Video Prototyping
System to Reduce Re-Shooting and Increase Re-Usability. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology. 675–682.

[38] Germán Leiva, Nolwenn Maudet, Wendy Mackay, and Michel Beaudouin-Lafon.
2019. Enact: Reducing designer–developer breakdowns when prototyping custom
interactions. ACM Transactions on Computer-Human Interaction (TOCHI) 26, 3
(2019), 1–48.

[39] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020. Pronto:
Rapid Augmented Reality Video Prototyping Using Sketches and Enaction. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/3313831.3376160

[40] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[41] Tom Lieber, Joel R Brandt, and Rob C Miller. 2014. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2481–2490.

[42] Sarah Lim, Joshua Hibschman, Haoqi Zhang, and Eleanor O’Rourke. 2018. Ply:
A visual web inspector for learning from professional webpages. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software and Technology.
991–1002.

[43] James Lin, Mark W Newman, Jason I Hong, and James A Landay. 2000. DENIM:
finding a tighter fit between tools and practice for Web site design. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. 510–517.

[44] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A Lau. 2009.
End-user programming of mashups with vegemite. In Proceedings of the 14th
international conference on Intelligent user interfaces. 97–106.

[45] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A Myers. 2019. Unakite:
Scaffolding Developers’ Decision-Making Using the Web. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology. 67–80.

[46] Josip Maras, Maja Stula, Jan Carlson, and Ivica Crnkovic. 2013. Identifying code of
individual features in client-side web applications. IEEE Transactions on Software
Engineering 39, 12 (2013), 1680–1697.

[47] Justin Matejka, Michael Glueck, Erin Bradner, Ali Hashemi, Tovi Grossman, and
George Fitzmaurice. 2018. Dream lens: Exploration and visualization of large-
scale generative design datasets. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–12.

[48] BradMyers, Sun Young Park, YokoNakano, GregMueller, and AmyKo. 2008. How
designers design and program interactive behaviors. In 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing. IEEE, 177–184.

[49] Brad A Myers, Ashley Lai, Tam Minh Le, YoungSeok Yoon, Andrew Faulring, and
Joel Brandt. 2015. Selective undo support for painting applications. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
4227–4236.

[50] Mark W Newman and James A Landay. 2000. Sitemaps, storyboards, and specifi-
cations: A sketch of web site design practice. In Proceedings of the 3rd conference
on Designing interactive systems: processes, practices, methods, and techniques.
263–274.

[51] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2015. Designscape:
Design with interactive layout suggestions. In Proceedings of the 33rd annual
ACM conference on human factors in computing systems. 1221–1224.

[52] Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding interactive
behaviors in dynamic web pages. In 2009 IEEE Symposium on Visual Languages

https://doi.org/10.1145/3313831.3376160

UIST ’21, October 10–14, 2021, Virtual Event, USA Yan Chen, et al.

and Human-Centric Computing (VL/HCC). IEEE, 105–108.
[53] Jungkook Park, Yeong Hoon Park, and Alice Oh. 2018. Non-Linear Editing of

Text-Based Screencasts. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology. 403–410.

[54] Jeffrey Stylos, Brad A Myers, and Andrew Faulring. 2004. Citrine: providing
intelligent copy-and-paste. In Proceedings of the 17th annual ACM symposium on
User interface software and technology. 185–188.

[55] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and
Amy J Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives
through High-Level Design Constraints. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–13.

[56] Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and
Radomír Měch. 2012. Learning design patterns with bayesian grammar induction.
In Proceedings of the 25th annual ACM symposium on User interface software and
technology. 63–74.

[57] Edward R Tufte. 1983. The visual display of quantitative information. Vol. 2.

[58] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Callisto:
Capturing the" Why" by Connecting Conversations with Computational Narra-
tives. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[59] Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
152–165.

[60] Xiong Zhang and Philip J Guo. 2018. Fusion: Opportunistic web prototyping with
ui mashups. In Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology. 951–962.

[61] Nanxuan Zhao, Nam Wook Kim, Laura Mariah Herman, Hanspeter Pfister, Ryn-
son WH Lau, Jose Echevarria, and Zoya Bylinskii. 2020. Iconate: Automatic
compound icon generation and ideation. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. 1–13.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Example-Based Retargeting for Interface Design
	2.2 Enhanced Copy and Paste
	2.3 Connecting UI Design and Implementation
	2.4 Exploration and Prototyping
	2.5 Recording and Reuse

	3 Umitation
	3.1 The Umitation User Experience
	3.2 Design and Implementation

	4 System Evaluation
	4.1 Participants
	4.2 Study Design
	4.3 Tasks
	4.4 Results

	5 Discussion
	5.1 Umitation's Role in the Design Lifecycle
	5.2 System Scope and Study Limitations
	5.3 Future Work

	6 Conclusion
	7 Acknowledgements
	References

