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Abstract

Background and Motivation. Live coding is a common peda-
gogical technique where instructors write code in real time during
lectures. For students, the main drawbacks of live coding are that it
can feel too fast and it can be difficult to take notes.

Objectives. Our work seeks to improve the student experience
in live coding lectures by: (1) understanding how instructors expect
students to take notes and what challenges students face in doing
so; and (2) investigating whether a specialized note-taking tool can
help students keep up with the pace of the lecture and take better
notes.

Methods. Based on interviews with instructors who use live cod-
ing (n=10), we designed a simple note-taking interface consisting
of a rich text editor which allows students to take snapshots of the
instructor’s code. We conducted a within-subjects lab experiment
(n=57) comparing our interface with a traditional code editor during
two 15-minute live coding lectures. We used quizzes and surveys
to assess learning, mental workload, and student perceptions, and
analyzed students’ notes to determine how much information was
captured from the lecture.

Findings. In the experimental condition, NASA-TLX surveys in-
dicated a significantly lower mental workload and students reported
that they could more easily keep up with the lecture. Additionally,
students perceived their notes to be more useful and our analysis
revealed that the notes had significantly more information from the
lecture and provided more context for copied code. Despite these
benefits, we did not see a significant difference in learning between
the two conditions.

Implications. Our results show that during live coding lectures,
we can decrease student mental workload and increase the quality
of notes by providing an interface which (1) allows capturing the
instructor’s code without having to type it out; and (2) maintains
a clear visual distinction between code snippets and other text.
Future work may examine if such an interface can lead to learning
gains over long-term use in the classroom.
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1 Introduction

Live coding in programming classes is a pedagogical technique
where instructors teach programming concepts by writing code
live in front of learners [50, 58, 61]. Instructors typically share
their code editor through a projection screen in a classroom and
explain their thought process by speaking aloud while writing
code [57]. By revealing the instructor’s programming process, live
coding is seen as a valuable way to demonstrate tacit programming
knowledge, such as debugging, incremental coding, and iterative
testing [4, 58]. Live coding is typically well received by students,
who often report increased engagement and a preference for live
coding over other types of lecture delivery [17, 22, 68]. For these
reasons, many consider live coding an effective lecturing technique
and advocate for its use in the classroom [6, 9, 17, 20, 61, 75]. Live
coding is also widely used in recorded videos, from streamers who
broadcast their development process [11, 18], to recorded lectures
on YouTube!, to some of the most popular online programming
courses, such as EdX’s CS50 series? [1].

Live coding is not without drawbacks. For students, the main
drawbacks of live coding are that it can be difficult to keep up with
the pace of coding [17, 63, 66] and that it can be difficult to take
notes [66, 69]. Researchers have called for future work to investigate
how to maintain the benefits of live coding while minimizing these
costs [17, 66].

!For example: https://youtu.be/EHiORDZ31VA
2See: https://youtu.be/JP7TITIXGpHk
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In this work, we investigate if the drawbacks of live coding can be
mitigated by changing how students take notes during a live coding
lecture. Some suggest that during live coding lectures, it will be
beneficial for students to type along on their own computer to copy
the instructor’s code [23, 57]. Although a recent study found that the
degree to which students type along is associated with different quiz
outcomes [74], empirical studies of live coding instruction typically
do not control for student note-taking behavior [57, 64, 66, 74].
There remains a need to better understand how students can most
effectively engage with live coding lectures based on their individual
needs and the challenges inherent to the medium.

To address this need, we set out to answer two research ques-
tions:

e RQ1: What do instructors expect students to do during live
coding lectures and what types of challenges do they observe
students facing?

e RQ2: Does a note-taking interface designed for live coding
lead to better outcomes in terms of student learning, mental
workload, and quality of notes?

To address RQ1, we interviewed ten instructors who use live
coding in the classroom to understand their experiences, how they
incorporate live coding into their lectures, and the perceived chal-
lenges faced by students. One key finding was that instructors
were ambivalent about whether students should code along with
them. Instructors felt copying down their code might aid students’
memory and allow them to experiment with the code, but also
acknowledged that typing along could be distracting for students
and could lead to falling behind.

To address RQ2, we designed a simple note-taking interface
for live coding based on the findings from our interviews. Our in-
terface provides a rich text editor for taking notes, which allows
interleaving text with embedded code snapshots taken from a mir-
rored version of the instructor’s code editor. In a within-subjects lab
study (n=57), we compared this mode of interaction with a baseline,
where participants took notes in a typical code editor where they
had to type out the instructor’s code to copy it down.

Our results suggest that our experimental system helped students
overcome two main challenges of live coding: it helped students
take more comprehensive notes during live coding lectures and
helped students keep up with the pace of lecture by reducing the
mental workload required to copy down the instructor’s code. De-
spite addressing these drawbacks, we did not find a significant
difference in learning between the two conditions. Still, our results
indicate that instructors who use live coding may potentially im-
prove their students’ experience by providing an interface which
allows students to capture the instructor’s code without typing
it out and which has a clear visual distinction between code and
other text. Future work can further explore the effectiveness of our
approach in a classroom setting.

2 Related Works
2.1 Live Coding in CS Classrooms

Though the term “live coding” has alternate meanings in other
domains [60], in the realm of CS education, it refers to a lecture
technique where the instructor writes code live in front of stu-
dents [63]. Live coding can be used to deliver the entire lecture [50]
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or can be reserved for example problems and interleaved with other
modes of delivery [8]. While live coding, the instructor typically
projects their screen and thinks aloud to share their thought pro-
cess [57]. Most often, live coding is instructor-led [63], which is
the mode we focus on in this paper. However, other approaches
more directly involve students by having them actively guide the
instructor’s coding process [67] or even by asking the students
themselves to code in front of the class [19, 20].

Many papers report the benefits of live coding, typically from the
student’s perspective. Students find live coding effective in many
ways and often prefer it over other lecture techniques [22, 68]. Most
notably, students perceive it as beneficial to watch instructors live
coding, accessing the step-by-step procedure of problem solving [3,
17, 25]. Instructors, as practitioners, consider live coding a way
to reveal their thought processes to students incrementally [76].
Brown and Wilson claim that live coding allows instructors to be
more responsive to “what-if” questions [6]. In addition, the dynamic
nature of live coding is thought to make it easier for students to pay
attention and stay engaged [61, 63]. Relatedly, students’ perceived
cognitive load was reported to be lower in lectures using live coding
compared to lectures using static code examples [57].

2.1.1  Elusive Learning Gains. Despite the ample literature that
suggests the potential benefits of live-coding lectures, researchers
have repeatedly failed to find a learning gain from live-coding
lectures compared to using static code examples [17, 57, 61, 64, 66,
74]. Given the myriad perceived benefits of live coding, why do we
see inconclusive learning gains?

One possible explanation is that the benefits of live coding may
not be easily captured by learning measurements. Researchers and
practitioners have suggested that live coding may be well-suited
for transferring procedural knowledge, such as debugging [6, 50,
58], and less effective for transferring conceptual knowledge [71].
While one study observed live coding led to better performance
on programming-oriented projects [61], a more recent study found
that live coding led to no significant difference in the programming
process seen on proctored coding challenges [66].

Another explanation is that the drawbacks of live coding dampen
its benefits. For instructors, a main drawback is that it can be time-
consuming to prepare and deliver live coding lectures [50, 73]. For
students, the main drawbacks of live coding are that it can be diffi-
cult to take notes and difficult to keep up with the lecture [63, 66].
The main aim of this work is to ameliorate these two drawbacks for
students, which we further contextualize within existing theories
of note-taking in Section 2.2.

2.1.2  Improving Live Coding for Learners. Relatively little research
has examined tools to aid learners in live coding lectures. Most
work focuses on video recordings of live coding lectures, providing
features such as slower playback speeds [2], video annotations [36],
or embedded coding exercises [49]. One system, Storyteller, aug-
ments a live coding recording by synchronizing the video with a
textual tutorial authored by the instructor [39]. Another system,
Scrimba®, allows learners to view recorded live coding lectures
and create experimental forks of the instructor’s code at any time.
Although Scrimba primarily focuses on asynchronous lessons, it

Shttps://v2.scrimba.com/
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can be used synchronously in a classroom setting, where its code
exploration features are perceived as useful by students [23, 24].
We note that none of the above work supports note-taking in a live
coding context.

2.2 Note-Taking and Live Coding

Note-taking is ubiquitous in higher education. Instructors deliver
lectures and expect students to take notes, capturing the fleeting
information that may not be readily available elsewhere [54]. Most
students perceive note-taking as useful for their learning and stud-
ies suggest most students take notes during lectures [45, 54]. Re-
search supports that note-taking is beneficial for learning [31, 35],
and many studies aim to understand how those benefits might
be mediated by learner characteristics [16], lecture delivery [34],
note-taking procedures [5], and note-taking tools [44, 48].

2.2.1 The Benefits of Note-taking. One of the benefits of note-
taking is its storage function [15]. That is, notes provide a record of
the lecture information for later review. There is strong evidence
that reviewing notes benefits learning [31, 35] and the storage func-
tion of note-taking is widely accepted as beneficial [54].

Another benefit of note-taking is its encoding function. That is,
the note-taking process itself is thought to promote learning. The
evidence for note-taking’s encoding benefits is mixed [54], though
a meta-review showed a small positive effect [34]. Note-taking can
be cognitively demanding [7, 55], and consequently, benefits of
encoding appear to be sensitive to a variety of factors, such as
the speed and information density of the lecture [31, 54] and the
note-taking procedure used [31, 34].

Finally, note-taking may help students stay focused. One study
found that 62% of students surveyed took notes to help them pay
attention in class [45]. Several other studies suggest that note-taking
may play a role in reducing mind-wandering during lectures [30,
37, 78].

2.2.2 Taking Notes in Live Coding Lectures. In a typical live coding
lecture, an instructor might deliver information by speaking, writ-
ing code, and writing text comments [57]. Effective note-taking is
associated with generative activities like summarization and para-
phrasing, as opposed to verbatim copying [5, 38, 44, 48]. While
students can summarize or paraphrase the spoken words and text
comments from a live coding lecture, there are practical reasons
to have an exact copy of the instructor’s code (e.g., to be able to
reproduce and run the code without introducing errors). Thus, a
compromise note-taking strategy for live coding might involve
taking a verbatim copy of the instructor’s code while selectively
rewording and summarizing the other verbal information from the
lecture.

This work considers two different approaches for capturing the
instructor’s code in notes: typing it out or using copy-and-paste
operations. On one hand, typing out code might act as a beneficial
syntax drill [21] and can potentially aid with recall [7]. On the
other hand, note-taking is already a cognitively demanding activity,
and the additional effort required to type out code could lead to
cognitive overload and interfere with learning [29, 47, 55]. Our
study helps clarify whether typing out or copy-and-pasting the
instructor’s code makes a difference.
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There are other note-taking possibilities for live coding we do
not address in this study. For example, students could be given a
copy of the instructor’s code to annotate, similar to how students
might draw on PowerPoint slides. While annotation has shown
promise for sensemaking about code [28], this approach may be less
appropriate for live coding, where annotations can quickly become
outdated as the code evolves. Another option is that students could
write down the instructor’s code using pen and paper. While one
study showed longhand notes were superior to typed notes [48],
others show that this may not always be the case [38, 44]. For a
live coding lecture, writing out code with pen and paper may be
too time-consuming to be practical, and students cannot run their
code if it is on paper.

3 Study 1: Instructor Interviews

In order to deepen our understanding of live coding practices, we
conducted a preliminary study consisting of 10 semi-structured
interviews with CS instructors who regularly incorporate live cod-
ing into their lectures. The main goals of the interviews were: 1)
to understand what instructors expected students to do during
live coding lectures; and 2) to understand instructors’ opinions of
the difficulties students faced in live coding lectures. The study
procedure, discussed below, was approved by our university’s Insti-
tutional Review Board. Our findings from these interviews high-
lighted nuanced difficulties in note-taking and informed the design
and implementation of our note-taking tool and lab study.

3.1 Method

We interviewed 10 instructors who had experience with live coding
in CS lectures. Participants included professors with research re-
sponsibilities (n=2), graduate students (n=2), a high school teacher
(n=1), and several other university-level teaching faculty, lecturers,
and adjuncts (n=5). Their years of teaching experience ranged from
a single semester to 34 years, with an average of 13.9 years. More
information on the participants is found in Table 1.

The first round of participants was recruited through adver-
tising to our university’s mailing lists, and a second round was
recruited through open calls to social media. Participants filled out
a screening survey which defined live coding and asked them about
their teaching experience. Based on their responses, we reached
out to eligible participants (i.e., those with experience live cod-
ing) to schedule interviews. Interviews were conducted via Zoom
and lasted between 70-90 minutes. The first author conducted the
interviews, occasionally accompanied by another author.

We began the interviews by asking participants how they used
live coding in their lectures. We also discussed what they believed
students should be doing during their lectures, what challenges
they observed students facing, and how they, themselves, prepared
for the lecture.

We transcribed recordings of the interviews and conducted a
thematic analysis [12]. We began with an initial round of open
coding on the first six interviews. Through constant comparisons
of our codes, we developed concepts which we recorded in anal-
ysis memos [13], which provided structure for our initial themes.
Subsequently, we conducted a round of focused coding on all 10
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Table 1: The background information of instructors from the interview study. The courses listed refer only to the courses
instructors have recently taught using live coding and which we talked about in our interviews.

Years Teaching Course
TO1 34 Intro Python; Intro Java
TO2 7 Intro Python
To03 18 Databases; Data Structures and Algorithms
To4 16 Intro Data Science
TO5 2 Java; Computer Organization
To6 24 Intro Data Science
To7 4 Intro Java
TO8 25 Intro Java
T09 0.5 Intro Python
T10 8 Intro MATLAB

transcripts to further develop and iterate on our themes, which are
presented in 3.2.

3.2 Results

From our analysis, we identified three themes which inform how we
can support student note-taking in live coding lectures. Throughout
this section, we will refer to our 10 interview participants as T01,
T02, etc.

3.2.1 The Costs and Benefits of Typing Along. There was no con-
sensus among instructors as to whether or not students should type
along to copy down the instructor’s code. As for the benefits, many
instructors felt typing along would help students engage with and
remember the lecture material (T01, T02, T03, T04, T06, T08, T10).
As TO06 said, “when you write it down yourself, you remember it better
than when you just watch somebody else.” At the same time, some
instructors qualified that they were not sure to what extent it was
helpful, with T02 going so far as to say “I don’t think that they’re
learning very much if they’re just copying,” though clarifying “I'm
not saying it’s like, a total loss or I wouldn’t be teaching this way.”

As for the drawbacks of typing along, instructors felt it could
sometimes be distracting to students who may fall behind spending
too much time and effort typing. For example, T01 and T04 both
described having to repeat themselves while students tried to catch
up with typing the instructor’s code. T05 and T06 described students
asking them to scroll back to previous code they did not copy in time,
which T05 found particularly disruptive. In fact, T05 felt typing
along was distracting enough that they recommended against it for
their students:

(T05) I'd rather you be paying attention to what I'm
saying and understanding what I'm doing than trying to
frantically copy down every single ampersand, comma,
double quote, and whatever.

Even instructors who did value typing along would, at times, steer
their students away from it, asking them to temporarily stop typing
and instead focus on the instructor (T08, T10).

Instructors found that students often introduce errors in the code
when they copy from the instructor. While some instructors viewed
this as a good learning opportunity, others felt it was just another
source of distraction.

(T02) It’s an act of learning, like, oh, I forgot my paren-
theses or I, you know, need to make sure that I have
spacing correct.

(T05) They’re tracking down their error for the rest of
the lecture instead of paying attention.

Many instructors (T01, T02, T04, T05, T06, T10) attempt to mitigate
this issue by releasing their completed code after lectures, reasoning
that students will worry less about correcting errors during lectures
if they know they will have access to error-free code afterward.
Key takeaway: While typing along is perceived as an active,
engaging way to follow a lecture, instructors also find it can
be an unwelcome distraction for students. Instructors are
uncertain whether the benefits outweigh the costs.

3.2.2 Exploration through Writing Code. Several instructors (T01,
T02, T03, T06) felt that the incremental process of live coding was
well-suited for student exploration, and considered this a strength
of live coding.

(T06) [live coding] allows for a lot more interactive ex-
ploration. So, they have their own copy. [...] it gives them
the ability to try the code and try it a little differently
than what I did.

Thus, live coding might encourage spontaneous tinkering, where
students try out changes to the instructor’s code without being
prompted by the instructor to do so. Several instructors welcomed
this type of tinkering, considering it an acceptable or even desirable
behavior for students during their lectures (T01, T02, T05, T06, T08,
T10). T05 and T06 thought having access to the instructor’s code
live during lectures might make students feel safe to experiment
with the code, knowing they could easily revert to the instructor’s
code if necessary.

Most participants also mentioned giving students explicit coding
tasks to complete as part of a lecture. Instructors described a smooth
segue from walking through examples using live coding and then
asking students to try a similar problem on their own (T01, T03,
TO06). These code exercises not only provided value for students
to practice writing code, but instructors also found pedagogical
value in sharing various student solutions with the class (T01, T02,
T03, T04, T06, T10). They appreciated that students’ code provided
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an opportunity to compare different solutions and also to debug
authentically occurring student errors.

Key takeaway: Many instructors value exploration. Stu-
dents should be able to write and run code during a lecture,
either of their own accord or when the instructor asks them
to do so.

3.2.3  Not All Information is in the Code. Most instructors did not
dedicate the entirety of each lecture to live coding, but instead
presented information in a variety of formats. Many instructors
made use of lecture slides (T03, T05, T07, T08, T09), which were
sometimes used as the main vehicle for conveying information
(T07), but often used more sparingly, for example, only for a few
lectures that benefited from visualization (T05). Many instructors
also made use of screen annotation tools to draw directly on their
slides or code (T04, T05, T06, T08, T10).

Four instructors primarily presented their lectures within an IDE
(T01, T02, T05, T09). Instructors could highlight important points
by adding comments (T01), though adding sufficient comments was
seen as challenging due to time constraints (T02). These instructors
provided their finished lecture code after class, but T01 and T05 had
their own personal lecture notes, which they did not release to the
students. T05 felt their personal notes would be difficult for others
to understand: “(705) it’s almost more like a mind map sort of style
of notes [...] with just like, arrows going everywhere.” Notably, T05’s
own lecture notes encoded the order in which they would build up
the code during the lecture, but the code released to students only
showed the final version. Thus, while one of the strengths of live
coding is that it demonstrates the incremental process of writing
code, that process may be challenging for students to capture in
their notes if they simply copy the instructor’s code.

While instructors generally could only speculate how their stu-
dents took notes during their lectures, many hoped that students
would take notes beyond just copying the code. For example, T06
said “I hope they’re writing down some markdown and stuff of things
that we’re talking about.” T08, the high school teacher, encouraged
more detailed notes by asking their students to adopt a specific
note-taking strategy. They requested that their students keep notes
in a Google Doc, interleaving textual explanations with screenshots
of the instructor’s code (which students accessed via a live video
stream). T08 felt there was extra value in keeping notes separate
from the code editor, forcing students to “step away” and think
about how the code connects with other things they have learned.

Key takeaway: In live coding lectures, instructors present
information in a variety of formats, including code, verbal
instruction, code comments, lecture slides, markdown cells,
drawings, and annotations. Students’ notes taken during live
coding lectures should capture more information than just
the code itself.

4 Note-taking System Design

While our interviews provided insights into how to support stu-
dents in live coding lectures, we still lacked an answer to the ques-
tion: should students type along to copy the instructor’s code? The
instructors we interviewed had no consensus on an alternative
approach, but the key takeaways from our interviews provided
a guide for what might be effective. As we were not aware of an
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existing system that fit our needs, we decided to design our own
based on the following three design goals:

e (D1) Students should be able to add the instructor’s code to
their notes without typing out a copy of the code.

e (D2) Students should be able to write, edit, and run code so
that they can tinker and explore the code on their own.

o (D3) Students should be encouraged to take notes other than
just copying code examples.

4.1 Experimental Note-taking System

Our note-taking system is a browser-based interface divided into
two halves: a code editor on the left (Figure 1a) and a notes editor
on the right (Figure 1d). In the code editor, the instructor’s code
is streamed in real time to a read-only tab. In the notes editor,
the student can take notes using simple text-formatting options
such as headers, bold text, and bulleted lists. If a student wants to
capture code in their notes, they can simply highlight code from the
code editor on the left-hand side and click “Add to Notes” (Figure
1f) to add a code snapshot (Figure 1e) to their notes (D1). Code
snapshots show up as an embedded widget in the notes editor
containing a timestamp and the selected code with typical syntax
highlighting, identical to what is found in the code editor. Because
code snapshots are visually distinct from other notes, students can
easily tell how much of their notes were authored by themselves
versus the instructor, potentially encouraging students to take more
of their own notes (D3). For convenience, code snapshots in the
notes editor support copy, paste, undo, and redo operations.

If students want to write their own code, they can click on the
playground tab in the code editor (Figure 1b). Unlike the instructor
tab, the playground tab is editable, providing a place for students
to write and run Python code (D2). If a student wants to explore
writing their own code from scratch, they can type in code directly
into the playground tab. On the other hand, if a student wants to
tinker with the instructor’s code (e.g., testing a small change), they
can click the “Open in Playground” button in the instructor’s code
tab to immediately copy that code into the playground. Each code
snapshot in the notes tab also has an “Open in Playground” button,
which can be used even if that code no longer exists in the instructor
tab. The code snapshot feature also works in the playground tab,
so students can add snapshots of their own code to their notes.

4.2 Instructor Interface

We created a simple browser-based interface for instructors. The
main purpose of the instructor interface is to synchronize with
students using the experimental note-taking system (see 4.1). The
interface consists of a code editor, run button, and console which
displays the code output (similar to the left-hand side of Figure 1).
All code changes and console output are broadcast to the experi-
mental note-taking system and displayed on students’ computers.

4.3 Baseline Code Editor

We developed a baseline interface which matched the look and feel
of the instructor’s code editor. The only difference is that a student
can create separate tabs to write code. We reasoned that if students
were typing along in a typical code editor, they would be free to
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instructor.py | playground.py

5

6. def generator_count(): e avdiotng
7 print("starting")

8 yield 1

9 yield 2 @
Al

12 g = generator_count()

13 print(g)

14

15 # for x in generator_count():

16 # print(x)

17

18 print(list(g))l

19

20

[Run success]

@ instructor.py (11:06:03 AM)
<generator object generator count at 0xe23870>
starting
(1, 2, 31

[Run success]
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@

Normal $ B =

Generators

Why? Good for efficiently working w/ sequences of data.

Uses yield. Works w/ for loops.

~ instructor.py (11:04:02 AM) Open in Playground

def generator_count():
yield 1
yield 2
yield 3

for x in generator_count():
print(x)

have to "ask them for values" -- i.e., don't see "starting"

~ instructor.py (11:05:11 AM) Open in Playground

def generator_count():
print(“starting")

Figure 1: A screenshot of our experimental note-taking system. (a) The instructor tab streams a live copy of the instructor’s code
to the student’s browser. The tab also includes the instructor’s cursor and current highlight, shown in pink. (b) The playground
tab (not shown) is an editable code area where students can try their own code. They can either write a snippet from scratch,
use normal copy and paste operations to copy the instructor’s code, or use the “Open in Playground” button present in the
instructor tab or on any code snapshot. (c) The console shows the output whenever the instructor runs code or whenever the
student runs code from the playground. (d) The notes editor, where students have a simple text editor to write their notes. (e)
Code snapshots are part of the notes editor and are created by highlighting code in the instructor or playground tabs and then

clicking “add to notes” (f).

create new files (e.g., to organize their notes), so we also gave them
that option here.

We highlight that the baseline interface has many similar af-
fordances to the experimental system. Specifically, the baseline
system allows students to take notes as code comments (D3), and it
allows students to change the instructor’s code or write their own
(D2). The baseline differs from the experimental interface in two
key respects: (1) students have to type out the instructor’s code to
capture it in their notes or experiment with their own changes, and
(2) notes in code comments are not as easily distinguished from
code as the code snapshots are in the experimental interface.

4.4 Implementation

Our system is a web application written in JavaScript which uses
the CodeMirror 6 library to implement the code editors. We support
running Python code in the client’s browser using Pyodide in a
background web worker thread. To prevent infinite loops, there is an
eight-second time out for all code runs. On the backend, our system
uses Node.js with Express, as well as Socket.IO, for broadcasting
the instructor’s changes to the experimental note-taking system.
We use a relational database to store the instructor and student

code and note-taking history. Code for the system can be found at
https://github.com/echo-lab/live-coding-lecture.

5 Study 2: In-lab Experimental Study

We conducted a lab study to understand if our experimental note-
taking system would have an advantage over the baseline code
editor. We hypothesized the following:

e H1: Students find it easier to keep up with a live coding
lecture using the experimental system.

e H2: Students take better notes using the experimental sys-
tem.

e H3: Students have learning gains using the experimental
system.

The study was approved by our university’s Institutional Review
Board and the study materials are available online.*

5.1 Participants

We recruited 57 participants using our university’s mailing lists.
The number of participants was based on a power analysis; using an

4Study materials: https://doi.org/10.5281/zenodo.15627773
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Figure 2: An overview of the study procedure with corresponding section numbers. Groups of 2-8 participants joined in-person
sessions which lasted approximately 90 minutes. Each session had two different lectures, providing participants the opportunity
to follow one lecture with the experimental note-taking system and the other with the baseline code editor. A week after the
in-person session, participants completed two take-home quizzes using their lecture notes and filled out one final survey.

ANOVA for repeated measures within factors, the result indicated
that a total sample size of 52 participants is required to detect a
small effect size (f = 0.2) with a power of 0.80, & = 0.05, two groups,
two measurements. To be eligible, participants needed experience
programming in Python at least equivalent to an introductory class.
Interested participants filled out a short survey that asked them to
rate their familiarity with a variety of topics in Python, including
the topics of our two lectures: generators and decorators. We chose
these topics as they are typically not covered in a Python class,
but are simple enough to teach in a short lecture. We excluded
those who answered “very familiar” for either lecture topic, but
included those who answered “familiar,” “somewhat familiar,” or “I
do not know” We reasoned that, in a typical CS classroom, students
have a range of prior knowledge. We wanted to capture some of
that variety while still being able to derive useful signals from the
post-lecture quizzes.

5.2 Procedure

As summarized in Figure 2, our study consisted of a 90-minute
in-person session followed a week later by take-home quizzes and
a final survey. We hosted the in-person sessions with groups of 2-8
participants at a time. The sessions were led by the first author,
while the second author facilitated. During these sessions, partic-
ipants watched two 15-minute lectures, following one with our
experimental note-taking system (Section 4.1) and the other using
a baseline code editor (Section 4.3). At the start of each session,
participants were randomly divided into two groups, determining
the order they would use each interface. Thus, for each lecture, we
had at least one student using the baseline code editor and one
using the experimental system. We further outline the details of
the study procedure below.

5.2.1 Introduction and Tutorial. We began the session with an
outline of the study procedure. To incentivize active note-taking,
we informed participants they would be quizzed on the material

twice: once following the lecture (with no notes allowed) and once
again the following week (with notes allowed).

We then gave a brief tutorial for our two interfaces, in which we
projected our screen and asked participants to follow our actions.
For the baseline interface, we instructed participants to type along
with the lecturer as best they could and told them that they were
free to write additional comments or try out code if they desired.
For the experimental condition, we instructed participants to take
any notes they wanted to record in the notes editor (Figure 1d) and
to take snapshots of any code they wanted to save (Figure le). We
explained how they could try out code in the playground tab and
import code using the “open in playground” button. We repeated
an abridged version of the tutorial before the second lecture.

5.2.2 Lectures. After the tutorial, we proceeded with the two lec-
tures, which were designed and administered by the first author.
One lecture was on generators in Python, and the other was on dec-
orators. To limit ordering effects, we alternated the order of the two
lectures in each session. To maintain consistency across lectures,
the first author closely followed detailed notes, and we asked partic-
ipants to refrain from asking questions about the lecture material.
The lecture was designed based on the authors’ experience and ob-
servations of live coding. The lecturer’s code editor was projected
in the room for participants to see, and the lecture proceeded with
explanations interleaved with coding. At one point during each
lecture, the instructor gave the students one minute to complete an
exercise modeled after an example they had just explained, so in
both conditions, students had the opportunity to write their own
code.

5.2.3 In-person Surveys. After each lecture, we distributed a paper
copy of the Raw NASA-TLX survey [26]. We chose the NASA-TLX
survey because it focuses on a task (i.e., student note-taking), as
opposed to an instrument like the CS Cognitive Load Component
Survey [46], which focuses on instructional methods.

In addition to the NASA-TLX survey, we administered a digital
survey about how participants perceived using the interface. This
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survey contained several seven-point Likert-scale questions asking
participants how much they agreed with statements such as “I was
able to keep up with the lecture without falling behind” and “I felt
engaged with the lecture material while using this interface”

At the very end of the in-person session, we gave participants
one final short survey, which prompted participants to give open-
ended feedback comparing their experience using both interfaces.

5.24 In-person Quizzes. After the surveys following each lecture,
we administered a closed-note quiz to participants to gauge learn-
ing. The quizzes consisted of one coding question followed by
six multiple-choice and short-response questions. Participants had
eight minutes in total to complete each quiz.

5.2.5 Take-home Quiz and Final Survey. Finally, one week after
the in-person session, we sent an email to participants with links
to their notes and to a second set of quizzes. Their notes were
presented in the same interface they had used for each lecture,
though the experimental system only showed the notes editor and
not the instructor code tab (see Figure 1a). We emphasized that
they were allowed to use these notes, but that they should not
use any other resources or tools, such as search engines or large
language models. Each take-home quiz had five multiple-choice
and short-answer questions, followed by two coding questions. At
the end of the quiz were two Likert-scale questions about how
satisfied they were with their notes and if they used them or not.
We suggested they take no more than 15 minutes on each quiz
and reminded them there was no penalty for wrong answers. After
the quizzes, participants filled out one last brief survey where they
could provide open-ended feedback about their experience.

5.3 Qualitative Analysis of Notes Quality

We collected participants’ notes and analyzed them to assess their
quality, as the quality of notes has often been shown to correlate
with better learning outcomes [33, 44, 51, 53]. One common mea-
surement of quality involves breaking down a lecture into a set
of idea units, which correspond to single phrases within a sen-
tence [59], and then scoring each set of notes based on how many
of those idea units are present [7, 38, 44]. As described below, we
adapted this approach for live coding lectures, which consist of
ideas spoken aloud accompanied by several code snippets which
act as examples.

We began our analysis by summarizing the contents of each
lecture into two different types of information: idea units and code
units. We defined idea units as concepts or ideas that were spoken
aloud during the live coding lecture. In line with previous work [38],
idea units had to provide meaningful context. An example of an
idea unit is “once a generator is exhausted you cannot iterate through
it again.” A statement like “here is an example of a generator” would
not count as an idea unit, because it does not describe what the
example is.

We defined code units as conceptually related blocks of code
written during the lecture. Typically, whenever the instructor ran
the code in the editor, the relevant code would make up a single
code unit. Code units can be thought of as examples—while they
may illustrate an idea, we did not consider them to be idea units.

Daniel Manesh, Tong Wu, Yan Chen, and Sang Won Lee

The first and second authors independently produced a set of
idea units and code units for each lecture and then met to reconcile
the differences. The final list of idea units and code units acted as a
rubric: notes could be scored based on how many of the idea and
code units from the lecture were present. We further categorized
the code units present in each set of notes as follows:

e Labeled or Unlabeled: Labeled code units were those with
any accompanying description which could later be used to
contextualize the code. The description could be written in
plain text or as code comments, and could be as simple as
the phrase “generator example.

e Correct or Erroneous: Correct code units faithfully cap-
tured the meaning of the instructor’s code, while erroneous
code units had unintended errors (i.e., introduced by the
student).

Thus, each set of lecture notes can be summarized by four metrics:
(1) the number of idea units present; (2) the number of code units
present; (3) the number of labeled code units present; and (4) the
number of erroneous code units present. A summary is presented
in Table 2.

The first two authors analyzed five sets of notes independently
and then met to discuss and reconcile differences. After that, the
first two authors repeated the process twice more, each time on a
new set of twelve notes (10% of the data set). In the end, the authors
achieved 96% agreement with a pooled Cohen’s Kappa [14] value
of 0.82, indicating a strong level of agreement [42]. Following this
process, the first author analyzed the remaining set of notes.

6 Study 2: Results

Overall, when using our experimental note-taking system, par-
ticipants reported a lower mental workload and generated more
comprehensive notes. While participants perceived the experimen-
tal system as helpful for learning, those perceived benefits did not
lead to an observable learning gain. We present our quantitative
results broken down by each hypothesis, enriched with qualitative
insights from our open-ended survey responses. We label responses
from our participants as P01, P02, etc. For the remainder of this
section, when we report that participants agreed with a statement,
we present the aggregate number for the survey responses “slightly
agree”, “agree”, and “strongly agree” (and analogously for disagree).
For a more fine-grained breakdown of select survey responses, see
Figure 3.

6.1 H1: Mental Workload and Keeping Up

The NASA Task Load Index (NASA-TLX) revealed significant differ-
ences, with the code editor consistently showing a higher workload
across all measured dimensions (Figure 4). Wilcoxon signed-rank
tests indicated significant differences (p < 0.05) for all subscales
and for the raw total score (W = 223.5,p < 0.0001, |r| = 0.626)°.
The most pronounced differences were observed in Temporal De-
mand, Effort, and Frustration (all p < 0.0001), with large effect sizes
(Ir] = 0.695,0.618, 0.680, respectively). Significant differences were
also observed for Mental Demand (W = 297.0,p = 0.0001, |r| =
0.513), Physical Demand (W = 349.5, p = 0.0230, |r| = 0.303), and

SFor the NASA-TLX results, we excluded one participant because they left an item
blank.
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Table 2: The four metrics used to assess the quality of a set of notes.

Metric Description

Idea Units The total number of idea units from the lecture which were present in a set of notes.
Code Units The total number of code units from the lecture which were present in a set of notes.
Labeled Code Units Of the present code units, the number which were also contextualized with a label.
Erroneous Code Units | Of the present code units, the number which contained errors introduced by the student.

Survey Results
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Figure 3: Comparison of participant responses on select questions from a 7-point Likert-scale survey broken down by exper-
imental condition (code editor vs. experimental system). A vertical line at 0% represents the scale midpoint, and asterisks
indicate significance levels from Wilcoxon signed-rank tests (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Performance (W = 287.5, p = 0.0004, |r| = 0.470). These results sug-
gest that typing along in a code editor during lectures significantly
increases students’ mental workload.

From our survey, 91.2% of participants felt they kept up with
the lecture when using our note-taking interface, while only 38.6%
felt they kept up using a code editor (“Keeping up” in Figure 3).
This difference was significant, according to a Wilcoxon signed-
rank test (W = 98.5,p < 0.0001, |r| = 0.766). In their open-ended
feedback, thirteen participants (23%) specifically mentioned that
the experimental interface made it easier to follow the lecture, with
one participant explaining “(P28) the pace is maintained with the
instructor” and another expressing that “(P31) [1t] allowed me to pay
more attention to the lecture instead of focusing on typing.”

6.2 H2: Notes Quality

Our analysis revealed significant differences in our notes quality
metrics (defined in 5.3) between the two experimental conditions.
After confirming the non-normality of our four notes quality met-
rics with the Shapiro-Wilk test, we conducted a two-way mixed-
effects ANOVA for aligned rank transformed [77] (ART) values

of each metric with two factors: lecture topic (decorators vs. gen-
erators) and interface (code editor vs. experimental system). We
summarize key results below.

In terms of idea units, our results showed a significant effect
based on the interface (F(1,55) = 69.10, p < 0.0001). As shown in
Figure 5, more idea units were present in notes generated using
the experimental system (¢ = 12.6,0 = 6.11) compared to the
code editor (¢ = 6.9, o = 4.45). Thus, when using the experimental
system, students captured more of the conceptual ideas spoken
aloud in the lecture.

In terms of code units, our results showed no significant effect
from the interface on the total number of code units present in stu-
dent notes (F(1,55) = 0.43747, p = 0.51). On the other hand, there
was a significant effect of the interface on the number of labeled
code units (F(1,55) = 54.01785, p < 0.0001): code units were more
often labeled in notes generated using the experimental system
(u =9.2,0 = 4.13) compared to the code editor (u = 5.8, 0 = 3.45).
There was also a significant effect of the interface on the number
of erroneous code units (F(1,55) = 54.102, p < 0.0001 ), with errors
being less common in the experimental system (¢ = 0.19, o = 0.40)
compared to the code editor (1 = 1.37, 1.60). Altogether, although
the notes in both conditions contained about the same amount of



ICER 2025 Vol. 1, August 03-06, 2025, Charlottesville, VA, USA

Daniel Manesh, Tong Wu, Yan Chen, and Sang Won Lee

Raw NASA-TLX Scores

***

14

12 -

10

8

6

4

z i
0

Mental Demand Pysical Demand Temporal Demand

m Code Editor

****

Performance

*kkk

*kkk

Effort

*kkk

Frustration Total

m Experimental System

Figure 4: A comparison of Raw NASA-TLX Scores across the two experimental conditions. The total score is normalized to
a scale from 0 to 20, matching the scales for each dimension. Error bars indicate the standard error for each measurement.
Asterisks indicate significance levels from Wilcoxon signed-rank tests (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

code, in the experimental condition, a higher portion of that code
contained labels to provide context, and a lower portion of the code
contained unintended errors. We note that errors and a lack of
labels may make reviewing notes more difficult, and code errors
may also occupy a student’s attention if they plan to debug them
during a lecture.

Participants’ perceptions of their notes aligned with our analysis.

When we asked participants to rate the quality of their notes after
the open-note take-home quiz, 73.7% were satisfied with the quality
of their notes in the experimental condition, while only 43.9% felt
the same when using the standard code editor (“Satisfaction with
Notes” in Figure 3). A Wilcoxon signed-rank test revealed this was
a significant difference (W = 211.5,p < 0.001, |[r| = 0.647). In the
open-ended feedback, many participants expressed concern that
their notes from the code editor condition were either missing
content or contained incorrectly copied code.

Feedback from participants highlighted the ease of copying the
instructor’s code in the experimental system as a key benefit, but
many participants also appreciated the extra formatting capabilities
of the rich text editor.

(P24) [The experimental system] was much easier to
structure information; I don’t have to comment out notes,
and I can have headers and bold and bullet points. I can
also just copy code snippets from the instructor rather
than having to make sure I type it all out exactly w/o

typos.

(P19) [The experimental system] was preferable because
it was much easier to distinguish which parts of the
notes were code snippets and which ones were not.

10

6.3 H3: Learning Outcomes and Experience

Figure 6 shows both in-person and take-home quiz scores for both
lecture topics: decorators and generators. Similar to our notes qual-
ity analysis, we first confirmed non-normality with the Shapiro-
Wilk test, and then conducted a two-way mixed-effects ANOVA for
aligned rank transformed [77] (ART) values of quiz scores—both
in-person and take-home quiz scores—with two factors: the lec-
ture topic (decorators vs. generators) and interface (code editor vs.
experimental system).

Overall, there were no significant effects of either factor on
in-person quiz scores. For the take-home quiz scores, we saw a
significant effect from the lecture topic (F(1,55) = 9.83, p = 0.003),
but no significant effect from the interface or the combination of
interface and lecture topic. Thus, we found no evidence to suggest
that the interface participants used had a direct effect on their
learning outcomes.

In contrast, results from our survey indicate that participants
perceived the experimental system to be more beneficial for learning.
75.4% of participants felt that the experimental system positively
contributed to learning (“Helpfulness to Learning” in Figure 3),
while only 36.8% felt the same way about the code editor (W =
179.5,p < 0.001,|r| = 0.681). As one student explained, “(P21)
I had the opportunity to listen more as I do not have to type the
entire code.” Notably, the experimental system was also perceived
as more engaging, with 80.7% of students reporting feeling engaged
(“Engagement” in Figure 3) compared to just 49.1% for the code
editor (W = 229.5, p < 0.001, |r| = 0.628).

Finally, we found multiple correlations between quiz scores and
the notes quality metrics (defined in Section 5.3). To measure correla-
tions, we used Kendall’s Tau, a non-parametric test that can handle
ties [27]. In-person quiz scores were significantly correlated with
idea units present in the notes (r = 0.206, p = 0.002) and labeled
code units present in the notes (r = 0.177, p = 0.008). Take-home
quiz scores were similarly significantly correlated with idea units
(r =0.199, p = 0.002) and labeled code units (r = 0.145, p = 0.029).
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Figure 5: A comparison of the notes quality metrics across the two experimental conditions. Bars indicate average values and
error bars indicate the standard errors. Asterisks indicate significance levels of the experimental condition factor based on
running a mixed-effects ANOVA: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. While this graph shows data for both
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Figure 6: Weighted quiz scores for in-person and take-home quizzes, normalized out of a maximum of 10 points. The in-person
quiz consisted of six multiple-choice/short-response questions and one coding question. The take-home quiz, administered one
week after the lab study, included five multiple-choice/short-response questions and two coding questions. Coding questions
were weighted twice as much as all other types of questions. For both the in-person and take-home quizzes, there were no
significant effects from the interface, nor from the interaction of the interface and topic.

We note that while these correlations are significant, they may
be considered weak [62]. The full set of correlations are found in
Table 3.

7 Discussion

Our findings contribute to understanding the impact of different
note-taking strategies in live coding lectures, highlighting the bene-
fits of alternative approaches compared to transcribing the instruc-
tor’s code. In summary, we saw that our experimental note-taking
system—which did not require transcribing the instructor’s code—
reduced mental workload and led to higher-quality notes. However,
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we did not find any evidence that it would result in learning gains.
In this section, we further interpret these results and discuss impli-
cations for live coding lectures and note-taking practices. We also
highlight limitations that may impact the generalizability of our
results and call for further investigation.

7.1 Implications for Live Coding Lectures

In our lab study, we found our experimental note-taking system im-
proved upon two known drawbacks of live coding: that it feels too
fast for students and that it is difficult to take notes [66]. Even with
inconclusive learning gains, this suggests that adopting a system
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Table 3: Correlations (Kendall’s 7) between Note Quality Metrics and Quiz Scores (* p < 0.05, ** p < 0.01)

Idea Units | Code Units | Labeled Code Units | Erroneous Code Units
In-Person Quiz 0.206 ** 0.045 0.177 ** -0.071
Take-Home Quiz | 0.199 ** 0.126 0.145 -0.074

like ours may improve students’ experiences in live coding lectures.
Instructors can approximate our experimental system using multi-
ple existing technologies: for example, using a code editor which
supports read-only sharing (like Replit®) while asking students to
use a rich text editor with code block support (like Notion’). We
note that this fragmented approach may be less ideal than having a
single, integrative tool [43].

Regarding our approach, instructors may be concerned that stu-
dents will lose the benefits of typing along. From our interviews,
those perceived benefits include that typing along may (1) keep
students engaged; (2) aid memory; and (3) offer learning opportu-
nities for students to make and correct mistakes. We suggest that
using in-class coding exercises is an effective alternative to realize
each of these benefits. For keeping students engaged, including
in-class exercises in live coding lectures has been shown to have
sustained positive effects on engagement [65]. For aiding memory,
other studies suggest that typing out something verbatim does not
improve memory [44, 48], and we similarly did not see a difference
in our study. For learning from mistakes, we argue that making
mistakes while typing along during a lecture can involve a risk
of students becoming distracted or falling behind, which makes
this learning better suited for a time set aside for an activity. We
also note that our system may leave more time for class activities:
students may be more likely to keep up with a faster-paced lecture
and instructors can quickly share starter code templates for class
exercises.

Finally, while our lab study did not find learning gains using our
experimental system, future work can see if this result holds in a
classroom setting. As described below, our results suggest potential
avenues for learning gains that might be more likely to show up in
the classroom.

First, we found that using the experimental system led to a
significantly decreased mental workload for students. Using the
frame of cognitive load theory, decreasing extraneous cognitive load
(e.g., from copying the instructor’s code) should positively impact
learning outcomes [70, 72]. While we did not see this result from
our study, one explanation is that the extraneous cognitive load
from copying the instructor’s code was not enough to overwhelm
the working memory of our participants, given the relatively short
time span of the lecture (15 minutes), and thus had no negative
effects on learning. If this were the case, then we might expect
typing along in a code editor to be less effective for longer live
coding sessions, as working memory can deplete over periods of
extended exertion [10].

Second, our study found that students produced more com-
prehensive notes using our experimental system. While review-
ing higher quality notes is likely to lead to better learning out-
comes [31, 54], students had little incentive to review their notes in

Shttps://docs.replit.com/additional-resources/sharing-your-repl
"https://www.notion.com/help/code-blocks
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our study. In a classroom setting, however, students may naturally
be incentivized to study their notes (e.g., to prepare for exams),
and thus are more likely to reap the learning benefits of reviewing
notes [31, 35].

7.2 Implications for Note-taking

Our results suggest that using a rich text editor with copy and
paste access to the instructor’s code helps students to produce
more comprehensive notes during live coding lectures. Better notes
are generally associated with better learning and academic perfor-
mance [32, 51, 52], which matches our finding that the number of
idea units and labeled code units were both correlated with higher
quiz scores (see 6.3). Given the above correlation and our finding
that the experimental system led to notes with more idea units
and labeled code units (see 6.2), one might have also expected to
see learning gains in the experimental condition. The relationship
between notes quality and learning may be mediated by a variety
of factors, such as prior knowledge and transcription speed [54]—
future work can examine which factors may play an important role
in live coding lectures.

Our experimental system provides two features which may have
led to higher quality notes. First, the primary input method is rich
text, while code is supported as an embedded element which is
visually distinct. Consequently, it is easy to visualize which part of
the notes are generated from the student and which are generated
from the instructor (i.e., the code). If a student sees they have not
generated their own notes, they may feel like they are not using
the interface as intended. Second, our experimental system allows
copy-and-pasting the instructor’s code without typing it out. If a
student does not have to transcribe the code, this may free up more
time to take more comprehensive notes. Future work can isolate
these two features to test the effects of each separately.

Finally, we believe this type of note-taking, which allows stu-
dents to capture and embed materials created by the instructor,
could prove useful in a variety of lectures, including CS lectures
using static code or even lectures on other topics outside of CS.
We imagine a system where students can take flexible notes using
rich text, selectively embedding relevant artifacts shared by the in-
structor, such as diagrams, pictures, tables, or even demonstrations
(e.g., via video capture), which might not be feasible to copy into
their notes otherwise. While some students already use pictures to
capture lecture materials, pictures alone without additional notes
may not be effective [78]. When given materials like PowerPoint
slides, students often annotate those slides directly [45]. Future
work can examine how an annotation approach compares to an
embedding approach like in our experimental system.

7.3 Limitations

One limitation of our work is that we tested our interface in a lab
study rather than a classroom. We chose a lab study because it
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offered us more control in guiding student note-taking, and further-
more, we did not want to subject students to an untested interven-
tion that might affect their class performance. Because the encoding
benefits of note-taking are sensitive to a variety of factors [34], it
is possible we may see different results in a classroom setting (see
also 7.1). In a classroom setting, lectures might be longer, the topics
would vary, and students might be more motivated to learn the ma-
terial. On the other hand, students may be more likely to be off-task
in a classroom setting, especially when using laptops [56]. Having
the instructor’s code available to copy might benefit students who
multitask in lectures and need a way to catch up [41].

Another limitation of our study is that we primarily tested the
encoding function of notes, rather than the storage function. While
participants did take follow-up quizzes a week after the lectures,
it is difficult to interpret those results directly because (1) perfor-
mance could have been influenced by taking the same-day quiz
(i.e., a testing effect [40]), and (2) participants were allowed to use
their notes during the quiz. While our analysis of the notes qual-
ity suggests an improvement from using our system, future work
might test the storage function more directly by having students
review their notes for a set period of time before taking a follow-up
quiz [31].

8 Conclusion

In this work, we set out to better understand how to support stu-
dents during live coding lectures. Through interviews with instruc-
tors, we came to understand key challenges faced by students as
well as the pedagogical values held by instructors. Through a lab
study (n=57), we compared how students followed a lecture either
by typing along in a code editor or using a rich text editor that al-
lowed taking snapshots of the instructor’s code. We found the latter
approach led to a significantly lower mental workload and better
lent itself to taking quality notes, though ultimately did not lead
to learning gains. Future work can investigate how our findings
translate to a semester-long classroom setting.
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