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Figure 1: Mimic is a system that allows robot users to record arbitrary robot trajectory demonstrations and (A) save them as
templates. Later, they can re-use templates for remotely teleoperating the robot to perform manipulation tasks through: (B)
macros, parametrized templates activated by buttons, and (C) programs, sequences of parametrized templates that operate
autonomously.

ABSTRACT
Remote teleoperation is an important robot control method when
they cannot operate fully autonomously. Yet, teleoperation presents
challenges to effective and full robot utilization: controls are cum-
bersome, inefficient, and the teleoperator needs to actively attend
to the robot and its environment. Inspired by end-user program-
ming, we propose a new interaction paradigm to support robot
teleoperation for combinations of repetitive and complex move-
ments. We introduce Mimic, a system that allows teleoperators to
demonstrate and save robot trajectories as templates, and re-use
them to execute the same action in new situations. Templates can
be re-used through (1) macros—parametrized templates assigned
to and activated by buttons on the controller, and (2) programs—
sequences of parametrized templates that operate autonomously.
A user study in a simulated environment showed that after initial
set up time, participants completed manipulation tasks faster and
more easily compared to traditional direct control.
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1 INTRODUCTION
Robot teleoperation is necessary in many cases where robots cannot
operate fully autonomously, such as for surgery and manufactur-
ing [12, 36, 58]. In these scenarios, teleoperators need to attend to,
and actively make decisions about the robot’s movement based on
an understanding of its environment gained through sensors (e.g.,
cameras). Joysticks or controllers [24, 27] are a primary method for
commanding robots through combinations of complex and repeti-
tive movements [37, 41]. However, joysticks typically have fewer
degrees-of-freedom (DoF) compared to the high degrees-of-freedom
that robots use to plan movements [9, 27], among other difficulties
[14].

Automating repetitive tasks has the potential to relieve the tele-
operator’s workload. We are inspired by how collocated end-user
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robot programming supports the automation of repetitive tasks
through pre-defined movements [22] or recorded demonstrations
[3, 29]. However, teleoperation fundamentally differs from collo-
cated scenarios due to its unpredictability [14]. We apply principles
from end-user robot programming to improve the teleoperator’s
experience.

We propose Mimic, a novel system that allows users to record
and re-use demonstrations in the context of teleoperating a tabletop
robotic arm with a joystick interface. In the recording phase, users
can manually control the robot and provide a single demonstration
of an arbitrary trajectory to the robot. The system generalizes the
recorded movement, learned using dynamic movement primitives
(DMPs) [30, 53], and can then generate trajectories for arbitrary
start and end locations. Users can parametrize these trajectories
(such as on the type of object to pick up), and save them as a tem-
plate for re-use throughmacros or programs.Macros let users assign
parametrized templates (such as a custom “pick” or a “place”) to
individual buttons on the joystick for subsequent single-click acti-
vation. Programs allow users to combine multiple templates, which
can then execute autonomously. Mimic is realized in a simulated
environment through the Unity game engine and ROS.

Mimic was evaluated in a remote user study where 12 partici-
pants first tried the recording and re-use features of the system, and
then completed a grocery bagging task using direct control, macros,
and programs. The results show that, despite an initial setup time to
create the templates, participants completed the task significantly
faster with macros (35%) and programs (69%) compared to direct
control, and overwhelmingly preferred the macros and programs.
The system also allowed teleoperators to maintain control and fine
tune the robot’s movements when needed.

This work advances knowledge on designing mechanisms to
improve the teleoperation experience. We contribute:

• A proof-of-concept simulated robotic system, Mimic, demon-
strating the ability to record and apply arbitrary robot tra-
jectories in real-time.

• An evaluation showing that Mimic improves the user’s tele-
operation performance and user experience.

2 RELATEDWORK
2.1 Combating the Challenges of Teleoperating

Robots
Prior work has aimed to mitigate the numerous challenges associ-
ated with robot teleoperation (see [14] for a survey). For instance,
research has explored increasing the field of view that operators
can see such as through perspective folding [63] or stereo cameras
[55]. Alternatively, additional stationary [48] or dynamic [50, 61]
viewpoints can be provided. Other research has proposed simpler
direct control schemes such as object-centric navigation for drones
[33] and relaxing constraints between the user and robotic arm
[49]. AR visualizations have also been used to support teleopera-
tors, such as controlling a virtual surrogate of the physical robot
[64] or streaming what they can see [26].

Despite these improvements, the teleoperator still needs to pro-
vide continuous commands to the robot. Researchers have also
proposed various shared control schemes to assist teleoperators,

such as by auto-completing their movement if it matches a pat-
tern [66] or shared control by predicting user intent using different
approaches [2, 16, 17, 21, 25]. Shared control is usually activated
automatically, but our work targets the deliberate activation of au-
tomation by the user.

2.2 End-User Robot Programming
End-user robot programming (EUP) has emerged as a way to enable
users with limited programming experience to program robots
(see [3] for a survey), particularly for scenarios where humans
and robots are collocated. Here we review work that focuses on
manipulation tasks.

Some approaches provide the user with pre-programmed prim-
itives like "pick up" to create programs [20, 28]. Although such
high-level primitives greatly simplify the programming task, it is
difficult to provide users with robust and generalizable primitives
that can function in every possible scenario. Other approaches
allow users to demonstrate trajectories and learn a generalizable
model of the action from these demonstrations. This is typically
achieved by representing trajectories relative to reference frames
of objects or the environment [6, 7, 18, 29, 46]. The reference frame
can be adapted to a new scenario by the user or autonomously via
robot perception [34, 35].

To our knowledge, end-user robot programming has seen limited
application to support teleoperation. Senft et al. [57] propose an
approach where teleoperators can select from a list of pre-defined
movements and choose actions to be applied on individual objects
(such as picking up an individual screw). Our work expands on
this approach in a number of important ways. In particular, we
allow users to record and save trajectories contextualized in the
task environment, which can then be generalized to allow the user
to specify trajectory characteristics that are unique to the task (e.g.,
picking up a screw from a specific approach angle due to possible
collisions). Our proposed approach also supports the impromptu
deployment of templates whereas end-user programming work usu-
ally necessitates the exact specification of the sequence of actions
(e.g., pick up the first screw and place it in the bin). This is especially
valuable for teleoperation scenarios since planning far ahead is not
always possible. Finally, our approach augments automation with
direct control from the user as needed.

2.3 Learning from Demonstration
Prior work has proposed learning generalizable robot behaviors
through demonstration (LfD) [10, 13, 52], typically for automating
robot behaviors. Some modern methods take demonstrations repre-
sented as keyframes [5, 43], while most methods take continuous
time series of joints or end effector poses. There are many ways
in which skills are represented within LfD research. Most com-
monly, behavioral cloning methods learn a mapping between ob-
served states and actions, i.e., a policy, without needing to know the
demonstrator’s latent objectives and using only a few demonstra-
tions. Dynamic movement primitives (DMPs) [30] are an example
of a behavioral cloning model that support learning from a single
demonstration. Based on a single example, a DMP can generate
trajectories that match the characteristics of the original trajectory
in a new context. They have become a standard representation of
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Figure 2: Mimic’s user interface in author mode. The awareness widget (A) shows the state of the interface and the robot. The
create tab (B) allows the user to see a recorded demonstration, visualized with a robot (D) and Cartesian path (E). The recorded
demonstration can be edited using segment operations (C), and parametrized and saved as a template (F). The apply tab (G)
allows the user to browse previously saved templates (H) visualized with a robot (I) and its saved drop-off location (J). Re-use
can be achieved by creatingmacros (K) and programs (L). Active macros (N) can be seen regardless of the mode of operation and
currently available programs (M) are visible.

robot movement [44], and successfully applied in many domains
[53] such as for assembly tasks [8] and human-robot collaboration
[1, 59]. Some researchers have also worked on allowing skills to be
maintained or adapted later on, such as throughAR-based interfaces
[38]. We propose to leverage LfD in a novel context—supporting
teleoperators by recording trajectories which are represented using
DMPs, to quickly learn from and generate new trajectories.

3 MIMIC SYSTEM
3.1 Overview and Design Goals
We developed Mimic to explore the idea of recording and re-using
arbitrary robot trajectories to enable operators to blend autonomous
movement with direct control (Figure 1). Mimic is inspired by recent
end-user programming interfaces for various human-robot interac-
tion scenarios such as collaboration [54] and co-located end-user
robot programming [4, 56]. Mimic was designed with the following
design goals in mind, to address some of the constraints discussed
in our review of the prior literature:

• DG1:Allow the user to record demonstrations in-situ (during
task execution) and modify them later. This ensures that
the user can quickly capture task-specific movements for
immediate re-use.

• DG2: Support parametrization of recorded demonstrations
for generalization through templates. This is critical to en-
sure that users can create scenario-specific movements (e.g.,

pick up certain object types using a particular recorded
demonstration).

• DG3: Support generalizability of demonstrations by pro-
ducing trajectories with similar movement characteristics
despite changes in task parameters (e.g., object types or goal
locations).

• DG4: Allow the user to easily execute templates during task
execution. This ensures that the user can re-use templates
to adapt to evolving task requirements.

• DG5: Give the user the ability to quickly “step in” through
direct control as necessary. This ensures that the user has
flexibility in switching between manual and autonomous
behavior depending on task demands.

3.2 Implementation Environment
The system is prototyped using the Unity game engine and ROS on
the Ubuntu operating system to present a simulated virtual robot
which the user controls. A game controller is used to control the
robot, and a keyboard and mouse is used for interface operations.
The implementation assumes teleoperation scenarios where mul-
tiple cameras provide access to diverse viewpoints (e.g., [50]). It
also assumes the ability to augment a camera stream with spatial
AR visualizations such as waypoints and user interface elements
(e.g., [60]). We elected to utilize a virtual simulation of a robot
as our focus is on the teleoperator interface, and not the imple-
mentation issues of a physical robot. Considerations of a physical
implementation are discussed later in the paper.
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3.3 Interactions
3.3.1 Modes of Operation. Mimic supports two operation modes:
control and author. Control mode allows the user to teleoperate
the robot using a game controller (e.g., Xbox or PlayStation) rep-
resenting Cartesian end effector velocities in 6DoF. The user can
open and close the robot’s gripper or reset its joints to the neutral
state. They can switch viewpoints between looking from behind
and looking from the front of the robot. A secondary, first-person
camera attached to the robot’s gripper is also available. In author
mode, the user can record new templates through demonstration
or apply existing templates through macros and programs. Figure
2 illustrates the user interface.

3.3.2 Recording Demonstrations. Mimic allows recording demon-
strations automatically ormanually (DG1).When automatic record-
ing is on, continuous robot joint states are captured for up to one
minute (a system parameter). Manual recordings begin with a but-
ton press. The recording stops when the user presses the record
button again or switches to author mode.

3.3.3 Editing and Saving Trajectories as Templates. In author mode,
the user can preview a recorded trajectory through the create tab
(Figure 2B). Mimic visualizes the trajectory as a list of Cartesian
poses which form a Cartesian path (Figure 2E). The poses are then
segmented to meaningful components (such as a “pick” or “place”)
through unsupervised path segmentation [32] and visualized with
different colors (Figure 2E). A visualization robot (Figure 2D) also
appears in-situ and replays the recorded trajectory in an animated
loop.

The user can inspect and edit the Cartesian path (Figure 2C) using
several interactions (DG1). These features provide fine-grained
control over the recording, such as trimming unwanted portions
(e.g., failing to pick up an object in the first attempt). Editing a
segment modifies the underlying joint positions comprising the
trajectory. When active, a segment can be deleted, merged, or split.

Once the user is satisfied with any needed edits, they can save
the remaining trajectory as a template (Figure 2F) by parametrizing
it using movement patterns (DG2). Mimic currently supports two
types of patterns, pick and place, as they represent a large class
of movement types today’s robots can perform. Before saving the
trajectory as a template, the user can select the pattern that best
represents it.

For pick templates, Mimic supports specifying one or more object
types. This means that a template can be created to pick up specific
object types if desired. In Mimic, grasping happens from the top—
though there are approaches to dynamically generate grasp poses
[39]. The robot closes its gripper after executing a pick template.

For place templates, the user can specify a drop-off location for
picked up objects. The user can save a new location using the
gripper’s current location. The robot will open its gripper after
executing a place template.

After parameterization, a template can be saved to store trajec-
tory information and its parameters—this triggers the learning of
the trajectory’s characteristics for re-use (DG3).

Retrieving and Re-Using Templates
The user can re-use a saved template in three ways: as a single

instance, a macro, and a program (DG4). In all cases, the first step

involves accessing author mode and selecting the apply tab of the
UI (Figure 2G) which displays previously saved templates. The
stored parameters of a template are visible when active, but can
be overridden. For example, a place template with a saved drop-off
location (Figure 2J) can be swapped to a new location. When a
saved template is browsed, the robot’s environment is augmented
with a visualization robot that replays the trajectory (Figure 2I).
Depending on the type of re-use, the next step varies:

Macro: When the user recognizes that a task they are doing
requires repetitive movements, they can create a macro rather than
execute the template just once (Figure 2K). For instance, a pick
template can be assigned as a macro to work for all cylindrical
objects. If the conditions required to activate a macro are true, the
robot plans and executes it. After selecting a template and possibly
overriding its parameters, the user can name the macro and assign
it to a controller button (Figure 2N). To activate a macro, the user
presses the corresponding controller button which prompts the
robot to begin checking if it can be used. When active, the macro
slot is highlighted (Figure 2N). An active macro can be halted at
any time by pressing the same button.

Program: If the user wants the robot to act autonomously, a
program, composed of one or more templates (Figure 2L), can be
used. Saved templates can be added to fill program slots. Currently,
two slots can be filled in a single program to represent pick and
place scenarios but this can be extended to integrate more complex
movements (e.g., picking up an object, performing an action, and
placing it somewhere).

Creating a program populates it in the list of available programs
(Figure 2M). A program runs when it is active—i.e., when the condi-
tions of the first template comprising the program is met. An active
program is visualized by a green icon. Running a program means
planning and executing trajectories for each template comprising it.
The user can pause a program at any point using the pause button
(Figure 2M). When multiple programs are available the user can
re-order them to change the priority in which they are executed.

3.3.4 Overriding the Robot’s Movement. The user can seamlessly
override the robot’s current movement by providing an input com-
mand (e.g., flicking the controller thumbstick), to transition back
to direct control (DG5). This can be useful if the environment has
changed, or an autonomous movement causes an unexpected be-
havior. User input immediately halts an active macro whereas the
robot resumes checking for programs when there is no active input
for more than one second (a system parameter).

3.3.5 Guided Trajectory Execution. In certain scenarios, au-
tonomous execution of the generated movement is not desirable
(e.g., when there are items nearby the robot could collide with).
Instead, the user can step through individual points of the generated
trajectory by pressing a controller button (DG5). This lets them
maintain fine control over execution without needing to manually
maneuver the robot.

3.3.6 Awareness Features. Mimic informs the user about the system
and robot state. An awareness widget (Figure 2A) indicates the
current mode (green denotes author mode and red denotes control
mode). The widget lets the user know when (1) they are controlling
the robot, (2) the robot is moving to the neutral position, (3) the
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Figure 3: Mimic’s system architecture—showing ROS-specific
components (left) and Unity-specific components (right).

robot is planning a trajectory, and (4) the robot is executing a macro
or program. An in-situ trajectory trail appears each time the robot
plans a trajectory (green if successful and white otherwise) until
the execution finishes.

3.4 Implementation
Mimic is prototyped using Unity and ROS (Figure 3). The physics
of the robot are simulated in Unity (as articulation bodies) and
Gazebo [67]. MoveIt [68] supports the robot’s real-time movement
through theMoveIt Servo package andmotion planning. The Franka
Panda 7DoF robot arm is used in the simulation but Mimic is robot-
agnostic. Unity’s proprietary solution is used to communicate be-
tween Unity and ROS through messages and services. The Unity
robot subscribes to joint state changes on the Gazebo robot to keep
the two robots synchronized.

3.4.1 Teleoperation Architecture. In control mode, the user’s raw
controller commands are received in Unity, converted to velocity
commands, and sent to MoveIt Servo. They are later converted
to joint commands and sent to the Gazebo robot. MoveIt Servo
provides many parameters that can be tuned to achieve real-time
performance. We used parameters from a sample configuration file
for the Franka Panda robot [69].

3.4.2 Segmenting and Visualizing Joint Trajectories. When the user
wishes to edit and save a recorded trajectory, Mimic converts it
to a 6DoF Cartesian path of poses through forward kinematics us-
ing a ROS node. To simplify creating demonstrations, the path is
automatically segmented through a custom implementation of an
unsupervised segmentation algorithm [32]. Using Gaussian Mix-
ture Models after reducing the 7-dimensional joint trajectory with
Principal Component Analysis, the algorithm predicts the number
of segments that could belong to the trajectory. The Cartesian path
and segments are later sent back to Unity and visualized.

3.4.3 Learning and Applying Templates Using DMPs. Saving a tem-
plate after parametrizing it involves storing the joint trajectory,
Cartesian path, and meta-information (such as what object types
to pick up for a pick template) into a JSON file. Once saved, the
Cartesian path is used by the DMP learning module on the ROS
side. DMPs work by modelling a trajectory (or path) as a second-
order non-linear dynamical system akin to a spring-damper model
[30, 44]:

𝜏2 ¥𝑥 = ∝𝑥 (𝛽𝑥 (𝑔 − 𝑥) − 𝜏 ¤𝑥) + 𝑓

Here, 𝑥 refers to the state of the system, 𝑓 is the forcing function
manipulated to achieve non-linear behavior, ∝𝑥 and 𝛽𝑥 are con-
stants expressing the damping and spring behavior, 𝜏 is a constant
that modulates temporal behavior, and 𝑔 represents the desired goal
state. The forcing function influences the system’s behavior from
its current state to the goal state and is composed of: (1) a phase
variable 𝑧 that exponentially decays to zero from an arbitrary initial
state and (2) Gaussian basis functions𝜓𝑖 (𝑧). The forcing term is:

𝑓 (𝑧) = (𝑔 − 𝑥0)
𝑀∑︁
𝑖=1

𝜓𝑖 (𝑧)𝑤𝑖𝑧

After choosing the appropriate number of Gaussian functions,
their widths, and centers, the weight vector𝒘 (for the basis func-
tions) can be learned to minimize the loss between the robot’s
imitated trajectory and the user demonstrated trajectory. This is
a typical supervised learning problem whose solution can be esti-
mated using regression. Later, changing the initial state 𝑥0 and goal
state 𝑔 produces new trajectories. This is repeated for each degree
of freedom. An inherent limitation of DMPs for Cartesian space
learning is singularities associated with Euler angles representing
rotations, which are not independent of each other (unlike position
coordinates). This means that the robot may orient its gripper in
undesired angles while moving from the start to the goal state.
Hence, we use Cartesian DMPs [62] which handle the positions
and quaternions of the trajectory separately to generate a stable
trajectory (or path).

Cartesian DMPs are implemented using an open source Python li-
brary [70].When saving a template on the ROS side, the trajectory is
sent to the DMP learning module which imitates the demonstrated
trajectory and saves the learned weights (and hyperparameters of
the DMP) to a JSON file. When applying a template as an instance,
macro, or program, Unity sends a DMP generation request with
the name of the associated template and the desired start and end
goal states as 6DoF Cartesian poses to the DMP generator module.
This results in the generation of a Cartesian path representing the
desired movement. However, since DMPs are robot-agnostic, the
path needs to be converted into a feasible robot-executable joint
trajectory.

3.4.4 Motion Planning of the Robot’s Movement. When applying
templates, the output of the DMP generation module, a Cartesian
path, is sent to MoveIt to plan and execute robot trajectories. This
path is converted into a robot-executable joint trajectory using
inverse kinematics. However, the default planner can generate
trajectories that the robot may not be able to execute due to velocity
and acceleration limit violations. By retiming the trajectory [51], a
trajectory respecting the robot’s velocity and acceleration bounds is
generated. The trajectory is then executed on the Gazebo robot and
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mirrored on the Unity robot. We assume that the robot’s trajectory
can be executed at velocities and accelerations up to the robot’s
maximum joint limits.

3.4.5 Active Perception of the Robot’s Environment. For the pick
movement pattern, the robot makes decisions based on the type
of object. To support active perception of the robot’s environment,
a pre-trained YOLOv5 object detection model [31] was fine-tuned
by creating a synthetic image dataset using virtual grocery models
[71] and Unity’s perception package [72] to recognize 8 classes of
items. For detection, a virtual camera next to the robot streams
images of the scene every two seconds (a system parameter) to a
ROS node that sends it to the object detector. The model returns a
list of bounding boxes and class label predictions which are sent
back to Unity. We assume access to the 6DoF poses of all scene
objects for motion planning, but one could estimate 6DoF poses of
objects when such data is not available [47].

3.4.6 Macros and Programs. When the user activates a macro with
a button, themacro manager handles its execution by first checking
if any macros are active. If not, it activates the corresponding macro
and looks for conditions that must be met to execute it. For pick
macros, the manager tries to find object types matching those speci-
fied in the template (e.g., a pick macro for rectangular objects only).
If found, the manager requests a plan from the DMP generator. For
place templates, the conditions are met if the gripper’s current pose
is available. To execute, a motion plan with the current pose as the
start and a drop-off location as the end is generated. If a planning
request fails after three attempts (a system parameter), the macro
is deactivated.

Each program instance has its own checking functionality to
see if it can become active. Programs meeting the prerequisite
conditions are available to be used. The program manager checks
all available programs and activates them in the order in which
they were created, assuming no other program is running. Once
active, the program will aim to plan and execute all program slots
(containing templates) in sequence. If a planning request fails after
three attempts (a system parameter), the program becomes inactive
and the manager looks for new programs to execute.

For pick templates executed as macros and programs, Mimic
selects the object closest to the robot’s gripper whose object type
matches the template. User intervention through commands issued
on the controller terminate the current macro instance and reset
the active program.

4 USER STUDY
We conducted a controlled remote user study to understandwhether
users can quickly learn to use Mimic, whether they can efficiently
use it to complete manipulation tasks, and how the use of macros
and programs compare to the direct control baseline condition. In
particular, we were interested to know if the cost of setting up
macros and programs outweighed the speed gains from automating
repetitive movements. The study task required utilizing the core
features of Mimic (e.g., recording templates and re-using them as
macros and programs), but some advanced features (e.g., editing
segments or guided execution) were omitted.

Figure 4: The evaluation task environment showing (A) gro-
cery items to be manipulated, (B) where items needed to be
scanned, and (C) bags where items needed to be placed.

4.1 Tasks
The study was divided into two sections. The first section was used
as a feature exploration—to get participants accustomed to manual
controls for the robot, and to use Mimic and gain insight into its
features. The evaluation section was used to formally compare three
control conditions: direct control, macros, and programs. For the
evaluation, pre-made templates were provided as the goal was to
assess the cost savings of using templates for teleoperation. Since
each user demonstrates large variance in creating the same template
(e.g., pick) which is tied to their ability tomanually operate the robot,
we instead evaluated the user experience of creating templates in
the feature exploration section. All tasks were grounded in a grocery
bagging robot scenario as there have been recent attempts to use
robots in this context [73].

Feature Exploration: The feature exploration section was split
into four tasks. Themanipulation task let participants become accus-
tomed to picking and placing objects using the controller, requiring
them to place four grocery items into a bag. In the recording task,
participants recorded templates for picking and placing one grocery
item into a bag. For the macro task and program task, participants
were provided pre-made templates and used them to create macros
and programs respectively. The tasks involved placing four items
(two of each type) into two bags (one for each type). The pre-made
templates included one pick template and two place templates (one
for each bag).

Evaluation: The evaluation section (Figure 4) served to com-
pare three conditions (direct control, macros, and programs) and
involved picking up a set of five grocery items from the check-out
counter, scanning them, and placing them in one of two bags (each
with its own item types). The task was divided into three phases:
Phase 1 – setup bagging task, Phase 2 – repeat bagging task, and
Phase 3 – bagging with user intervention task. The task was divided
to separate the analysis of the different functionality that Mimic
offers – the ability to create macros and programs, the ability to
use the macros and programs (once created), and the ability to
interleave autonomous execution with user input.

In Phase 1, participants were provided one template for picking
up grocery items and one template each for scanning and placing
grocery items into a grocery bag, generated with a single demon-
stration via Mimic’s recording capabilities. Participants used the
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controls for the associated condition to clear the first set of items
by scanning and placing them in the correct bag. Once these were
cleared, Phase 2 began with a new set of the same type and number
of items appearing in a semi-randomized fashion. Phase 3 began
when the next set of items were cleared. In this phase, the location
of each grocery bag changed. In the macro and program conditions,
manual intervention was required at the end to ensure items were
placed in the correct bags.

For item randomization, each set contained the same number
and type of items (five items with one of each type) placed in
specific areas on the table depending on the set. Within each set,
objects were shuffled between five locations (120 combinations)
and displaced by +/- 0.01 m. A balanced Latin Square was used to
counterbalance the condition ordering.

Conditions: Three conditions represented the method partici-
pants used to complete the task. The direct control condition repre-
sented a baseline, where the game controller was used to manually
control the robot. In the macro condition, participants had to create
and use macros to complete the task. In the program condition,
participants had to create and use programs to complete the task.

Task Progress Awareness: Visual feedback provided partici-
pants awareness of task progress. In all tasks, bags were labelled
with the types of items that could be placed inside. Correctly placed
items were outlined in green. For the evaluation, scanning a grocery
item outlined it in yellow and caused the scanner to briefly change
color from green to red.

Task Characteristics: In both the feature exploration and eval-
uation, tasks were designed so that the participant never had to
rotate the robot’s gripper; they only performed translations inworld
coordinates. This ensured that the tasks were not too difficult to
complete with direct control as rotations can be particularly difficult
[14].

4.2 Robot Behavior & Assumptions
Our simulation supports physics for the robot (in Gazebo and Unity)
and grocery items (in Unity). However, in pilot studies, we noticed
that objects were sometimes grasped by the robot and dropped
due to the stochasticity of physics parameters such as friction.
Hence, to maintain consistency across trials, objects grasped by the
robot stayed grasped until the gripper opened to release them. In
the evaluation task, the robot did not attempt to pick previously
scanned and bagged items in the macro and program conditions.

4.3 Participants
Twelve participants (7 male, 5 female) with a mean age of 27.9 (std
5.1) were recruited through research networks. All participants had
experience using game controllers: two used their controllers daily,
three used them once a week, four used them two to six times a
week, and three did not use them on a weekly basis. One participant
had previously teleoperated a mobile robot as part of a robotics
competition.

4.4 Measures
In-application data was collected throughout the study, including
task completion time and time spent on different aspects of the

task. A post-study questionnaire and short interview solicited in-
formation about participants’ experience with the various features
of Mimic and their overall feedback. The screen streaming the
application was recorded throughout the study.

4.5 Procedure
Participants completed the study remotely through a Zoom call in
their homes using their own game controllers. Participants took
control of the experimenter’s PC to run the application using the
Moonlight streaming application [74]. Participants provided con-
sent prior to the study and completed a demographics survey. Par-
ticipants were given four tutorial videos explaining different system
components which they watched before each relevant task.

Prior to the teleoperation task, participants familiarized them-
selves with controlling the robot using a controller. Then they
stepped through each task as described and only stopped to watch
tutorial videos associated with the specific feature task. During the
feature exploration section, the experimenter intervened to provide
additional guidance if the participant struggled with a specific step.

For the evaluation, the experimenter reset an object’s position
if the participant toppled it over (usually during manual control).
Participants repeated the evaluation task in each condition one at a
time. In themacro condition, participants were given the suggestion
to either create individual macros for items belonging to each bag
or create a single macro for all items. Similarly, in the program
condition, participants were given the suggestion to create two
programs, one for each bag. In Phase 3 of the evaluation for the
macro and program conditions, participants were informed that
they needed to takeover at the end of the place movement as the
prepared macros and programs did not recognize that the bags had
changed locations.

5 FINDINGS
The findings focus on the qualitative aspects of participants’ expe-
rience using Mimic as well as the performance of the underlying
techniques, macros and programs, in comparison to direct control.
One participant’s data was omitted from quantitative analysis as an
outlier, as their completion time in the direct control condition for
Phase 2 and Phase 3 was greater than 2.5 times the standard devia-
tion. Their qualitative reflections were still captured and analyzed.

5.1 Evaluating Task - Performance
Completion time was analyzed through one-way repeated measures
ANOVA tests with Greenhouse-Geisser corrections for sphericity.
Given that each phase of the task assessed different functionality,
the analysis was performed separately per phase. Figure 5 shows
the completion time of participants in each phase of the task over
each condition. Figure 6 provides a detailed breakdown of the time
spent—including operating the robot, robot idle time, authoring
macros and programs in the respective conditions, and the time
spent by the robot acting autonomously.

Phase 1 – Setup Bagging Task: There was a significant effect
of the technique used on completion time (F(2, 20) = 8.74, p <
.005). Pairwise tests revealed that the macro condition resulted in
a significantly slower completion time than the direct control and
program conditions. Figure 6B shows that authoring time added



UIST ’22, October 29–November 02, 2022, Bend, OR, USA Karthik Mahadevan et al.

Figure 5: Evaluation task completion times by condition for
each phase. Dashed lines represent the mean and the solid
lines represent the median. Asterisks indicate pairwise com-
parisons with significance differences (p < .05*, p < .01**, p <
.001***).

Figure 6: Breakdown of time spent by participants in each
technique condition per phase of the evaluation task: (1) Ro-
bot idling (waiting for user input). (2) Participant operating
the robot. (3) Participant authoring macros and programs. (4)
Robot planning and executing trajectories.

Figure 7: Number of mistakes made by the robot and the user
when using macros and programs.

a substantial amount of time to completion time. This varied as
some participants opted to create one macro for all object types
whereas others found it easier (from a mental model standpoint) to
create individual macros per bag. There were also instances where
participants (P2, P12) created macros but re-created them right
before starting as they felt it made more sense to use a single macro
to pick up all the items. This was not the case for programs where

the obvious solution was to create one program per bag. There was
no significant difference in completion time between direct control
and program (Figure 5).

Phase 2 – Repeat Bagging Task: There was a significant effect
of technique on completion time (F(2, 20) = 23.87, p < .001). Pairwise
comparisons showed that the program condition resulted in sig-
nificantly faster completion time than the macro and direct control
conditions, whereas the macro condition resulted in significantly
faster completion time than direct control. As participants had al-
ready created the macros and programs needed to complete the task
in Phase 1, the advantage of using them (when little or no failures
occur) became clear. Although both macros and programs were
significantly faster, using macros resulted in more idle time than
programs (Figure 6 middle and right). With macros, we observed
that participants needed to (1) map the next action they wanted the
robot to perform with the macros they created and (2) recognize
when the robot could be issued new commands.

Phase 3 – Bagging with User Intervention Task: There was a
significant effect of technique on completion time (F(2, 20) = 3.91,
p < .05). Pairwise comparisons showed that direct control resulted
in significantly faster completion time than the macro condition. In
this phase, participants had to intervene at the end of the scan and
place routine of the robot in the macro and program conditions—
hence, user time (Figure 6) increased. Of note is the average time
spent controlling the robot in the macro and program conditions
which was nearly equal (Figure 6) but the variance for programs
was higher. This may be explained by the time-sensitive nature of
the takeover interaction. A majority of participants (6/11) were able
to take over and place objects in the correct bag in the macro and
program conditions while the remaining (5/11) had trouble (Figure
7). When using macros, robot errors were more common than user
errors—such as when the user did not take over before the robot
incorrectly placed items in the wrong bag (or outside the bag).

In contrast, when using programs, user errors were more
common—such as taking over and placing the item in the wrong
bag (Figure 7). This aligns with expectations as programs operate
more autonomously so the user may have been less prepared or for-
got the task context after takeover. In addition, since the robot did
not pick up or scan a previously placed item (since it was already in
the bag), failing to take over meant that participants had to correct
the mistake through direct control. However, as programs resumed
automatically, the robot spent less time idling than when macros
were used and tried to remain productive.

5.2 User Experience
We asked participants to rate their experience using Mimic. Figure 8
summarizes participants’ Likert responses about the different com-
ponents of Mimic while Figure 9 summarizes participants’ Likert
responses comparing the techniques (direct control, macros, and
programs). Overall, each of Mimic’s features received generally
positive responses (Figure 8). When comparing conditions to direct
control, macros and programs received better ratings for both Ease
of Use and Overall Experience (Figure 9).

5.2.1 Templates. Most participants felt that templates required
low effort to create and found the UI intuitive to use (Figure 8).
However, many participants felt overwhelmed when creating their
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Figure 8: Participants’ responses to Likert questions regarding creating templates, macros, and programs respectively. For effort
questions, the scale is 1: very high and 7: very low, and for other questions, the scale is 1: strongly disagree to 7: strongly agree.

Figure 9: Participants’ responses to Likert questions comparing each of the techniques in the user study for (1) ease of use and
(2) overall experience. Here, the scale is 1: strongly disagree to 7: strongly agree for questions about ease, multitasking, and
movement, while the scale for overall experience is 1: very poor to 7: excellent.

first template. For their first pick template, most participants (8/12)
missed steps including: forgetting to start or stop, or overriding
a recording, forgetting to select a parameter such as the object
type(s) for pick templates, and forgetting to save the template. Most
participants (10/12) did not miss steps of the template creation
workflow the second time (start recording > demonstrate > stop
recording > switch to author mode). However, most participants
(7/12) forgot to save a drop-off location before assigning it, possibly
since it was their first attempt creating a place template. Some
participants (3/12) stated that creating templates became easier
after creating the first template: “If you do it once, I find that it is
intuitive after that.” (P8).

Almost all participants (11/12) found creating templates or cus-
tom movements useful. They appreciated the flexibility of being
able to create scenario-dependent templates: “As long as there is
some repetition in the task, then sure there is definitely value in there.”
(P10). However, P4 stated that it was easier to use pre-recorded
templates rather than creating new ones as manually operating the
robot was difficult.

5.2.2 Macros. Overall, most participants rated macros as requiring
low effort to create and apply (Figure 8). A majority of participants
(7/12) did not have difficulty completing the macro task which
involved creating macros to pick and place items into a grocery
bag from the provided templates. Some participants (5/12) missed
minor steps, for example, selecting the wrong menu (hitting the
create tab instead of the apply tab), forgetting to name a macro, or
forgetting to assign it to a button. After setting up macros, some
participants (4/12) occasionally activated the wrong macro (e.g.,
applying a place macro without an item in the robot’s gripper). All
participants felt that macros were more useful than manual control,
but found them less useful than programs. Some participants (4/12)

remarked that macros gave them more control over task execution.
One participant liked that macros could be built and utilized to
support the user’s mental model of the task sequence: “The fact
that I could have different macros that fit the mental model of how I
would do the task was useful.” (P10).

Most participants (9/12) noted the possibility to mistake the
mapping between the button pressed and the macro it activated.
This could partly be explained by the default behavior of macros
being assigned to the first available slot so participants had to be
deliberate in assigning each macro. For instance, P4 stated that at
one point, their macros for the right and left bags in the evaluation
task were flipped.

5.2.3 Programs. Participants felt that creating and applying pro-
grams required low effort (Figure 8): “Because the templates were
provided, it was extremely easy by comparison. I could really quickly
get out of the menu and watch it go in motion.” (P6). Half the par-
ticipants (6/12) did forget minor steps while creating programs,
including forgetting to fill the second program slot, attempting to
add the same template to multiple slots, or selecting the wrong
menu. All participants felt the idea of programs was useful and felt
that programs would save them from the workload and difficulty of
manual control: “The programs were great for taking care of every-
thing.” (P11). However, it was noted that in noisy and unpredictable
environments, programs may require more intervention: “The only
issue with programs is that it does involve a little bit of thinking ahead
of time to plan.” (P11).

5.2.4 Ability to Override. Most participants (11/12) found it useful
to override macros and programs at any time. Some participants
(3/12) noted that the transition of control was unclear, particularly
after they had finished the takeover and the robot did not immedi-
ately take back control. One user felt that macros were best suited
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to overriding: “You can do overriding in tandem with macros because
you are already pushing buttons anyway and you’re layering input
on top.” (P6).

5.2.5 Awareness. Participants primarily maintained awareness of
the control mode using the trajectory trail. P6 mentioned that know-
ing who was in control was easy since they had to stop touching
the controller in order for the robot to take back control. P11 stated
that they observed the stream of the camera mounted to the gripper
to predict when things were about to happen. However, they were
generally positive about awareness indications that let them know
when a macro or program was active.

5.2.6 Feeling of Collaboration. When asked if they felt in collabo-
ration with the robot, most participants (8/12) agreed to varying
extents. For instance, P10 assumed that the robot was an exten-
sion of their arm and used it as a tool whereas P11 described the
interaction as a dialogue between them and the robot. A few par-
ticipants (2/12) stated the collaboration was evident regardless of
condition, while some (3/12) believed they were collaborating when
activating macros and taking control for macros and programs, and
a few (3/12) only felt collaboration when taking over for macros
and programs.

6 DISCUSSION
Overall, the results indicate that recording and re-using templates
in-situ is feasible and effective for real-time teleoperation. However,
if users failed to take over when needed, the robot made errors
resulting in time delays.

6.1 Intertwining Direct Control and
Automation

With direct control, users found themselves constantly attending
to the robot’s environment to make decisions about its movement.
Macros and programs made their job substantially easier; they only
needed to pay attention in between template execution (for macros)
andmoments during which intervention was needed (for programs).
Still, participants had a strong preference for programs (10/12
agreed) but their explanations were more nuanced. Though pro-
grams performed best once set up, they necessitated time-sensitive
takeover because the templates were executed immediately in se-
quence, so the cost of mistakes was higher. Even when the user
successfully takes over, user mistakes could occur (Figure 7). There
is also an additional cost with programs: a mistake during template
execution could affect subsequent templates. Without additional
sensing, the robot would not be able to recognize a mistake, and
would continue. In these cases, the user would need to grab control.

We think macros may be more suitable than programs as they
abstract the complexity of fine-grained direct control but preserve
the ability to override without the fear of cascading errors. P5
said, “I felt that macros offered the right level of abstraction”. In
environments where the robot’s missteps do not substantially affect
task success, programs could be valuable, as beyond setting up and
occasionally providing fine control, the user can be a “silent observer
that manipulates it (robot) if and when needed.” (P1). There is also
the option to use macros as fallbacks to programs when the task
is straightforward but has some stochasticity. In a grocery store

scenario, a macro to press a physical button to advance the conveyor
belt for out-of-reach items is useful. Macros or programs can also
be interleaved with direct control—such as to fill a box with items
according to the user’s requirements— here automation minimizes
user time and effort but lets the user dictate exactly where to place
items.

6.2 Improving Robot Takeover Models
Takeover is time-sensitive and costly when a mistake occasionally
happens, so other interaction models could be pursued. In Mimic,
takeover results in immediate stoppage of a macro and program
but programs resume after a fixed period (and can also be manually
paused). Providing finer control over autonomous execution is
promising. For example, if the user fails to takeover and the robot
drops an item, the user could “rewind” the program’s state so that
it re-attempts the place template after the user picks up the item
instead of cancelling the program. Or, the system could provide
additional awareness cues of the robot’s next actions (beyond the
trajectory trail) to ensure takeover happens, based on prior work
on handover for semi-autonomous driving and state awareness
for mobile robots (e.g., [11, 42]). For instance, providing a visual
timer to let the teleoperator know when an autonomous movement
will finish could better prime them for takeover. In addition to
the teleoperator, providing awareness cues to people sharing the
physical space and collaborating with the robot could be beneficial.

6.3 Limitations and Future Work
Despite promising results, there are some limitations. Mimic and
the study results are grounded in a simulation that does not cap-
ture the unpredictability of the real world (although we included
a user intervention evaluation task). Some assumptions underpin
Mimic such as accurate object pose detection, the lack of a need
for collision detection (as all pick up templates grasp from the top),
and the ability to operate the robot at its maximum capabilities. In
the study, grasped objects were not dropped again but this could
happen in reality. Hence, a physical implementation is needed to
confirm the benefits observed in the study. However, we would
expect Mimic to outperform manual teleoperation since our ap-
proach records the robot’s movements in the real-world. Hence,
the generated movements would already account for real-world
considerations such as sensor noise in recording the joint angles. In
addition, Mimic lets users intervene to make fine adjustments to the
generated movement when there is no perfect model of the teleop-
eration environment. In contrast, manual teleoperation necessitates
a higher user workload and lower efficiency through continuous
user input.

The evaluation tasks were short (two to three minutes per phase).
Despite that, macros and programs performed very well. Longer
and more complex tasks involving several objects or robots will
likely demonstrate their benefits further especially if the robot’s
gripper needs to be manually rotated (unlike in the study tasks).
Template creation was not included in the evaluation task as the
goal was to assess the cost savings once templates were set up.
However, it would be interesting to compare task performance
when users can create their own templates.

The current behavioral cloning model (DMPs) is powerful and
worked well. However, as it only uses a single demonstration to
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learn and generate movements, poor demonstrations could lead
to worse generated movements. DMPs have been extended to let
users specify via-points, or points that generated trajectories must
traverse [53] to reduce the reliance on good demonstrations. Fur-
ther, DMPs occasionally produce out-of-reach or collision-laden
trajectories. This can be partly resolved by automatically switch-
ing to standard motion planning approaches to plan an arbitrary
point-to-point movement without collisions as a fallback option.
Newer DMP formulations can also account for collisions and gen-
erate modified trajectories even if they were not part of the initial
demonstrations [23]. Alternatively, models other than DMPs could
be explored, such as ProMPs [45] which increase the user’s burden
at recording time but can produce better trajectories despite the
variance in user demonstration quality. More novel approaches
such as one-shot visual imitation [19] and transformers [15] are
also viable, though they require a priori knowledge of the tasks to
be completed.

Mimic currently allows to create pick and place movement pat-
terns but any arbitrary patterns such as cyclical movements (e.g.,
shaking a can) can also be learned. At present, macro slots are lim-
ited by available buttons on the control interface but more macros
could be accessed through button combinations or double tapping.
Macros could also be chained in advance instead of individually
activated. For programs, Mimic could support conditionals (e.g.,
if/else statements) to express logic. It could also be expanded to
further support ease of re-use, such as automatically triggering
macros or programs based on the user’s task [65, 66] or suggesting
sequences of templates to the user [40].

Mimic allows specifying a few parameters at present—but ex-
panding this range to other sensors (e.g., touch or weight) or prop-
erties beyond object detection (e.g., user annotation of the camera
feed or detecting object relationships) could make it more powerful.
We are also interested in scenarios where the teleoperator and robot
work with a collocated person (e.g., for remote healthcare). This
requires accounting for human preferences and dynamics through
more advanced parametrization (e.g., human trajectory prediction
in the shared space).

Mimic’s current interface is usable but could be improved. For
example, the user needs to utilize a joystick for teleoperation and
a keyboard and mouse for authoring. A unified approach on a
single input device could reduce the user’s workload. Some features
such as editing individual keyframes of a long trajectory can be
cumbersome with a mouse. More novel configurations such as VR
present new opportunities to improve features such as trajectory
(keyframe) editing or browsing the library of recorded templates,
which could be made easier through spatial interactions as opposed
to screen-based interactions. Lastly, devices such as VR headsets
and controllers could enhance teleoperator immersion and result
in better demonstrations to learn from.

7 CONCLUSION
Today’s teleoperation interfaces typically require users to manually
command robots to achieve combinations of complex and repeti-
tive movements which is cumbersome. We present Mimic, which
demonstrates the idea of supporting teleoperators by allowing them

to record and re-use arbitrary trajectories through macros and pro-
grams. The evaluation suggests that the techniques helped users to
complete manipulation tasks more efficiently and easily after an
initial setup time. We hope that Mimic inspires future work into
building automated mechanisms to better assist teleoperators in
completing real-time manipulation tasks.
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