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Figure 1: VizGroup, an LLMs-assisted system for real-time collaborative learning analytics, visualizes student performance and
collaboration via a dynamic 2D scatter plot and provides proactive notifications for timely interventions.

ABSTRACT
Programming instructors often conduct collaborative learning ac-
tivities, like Peer Instruction, to foster a deeper understanding in
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students and enhance their engagement with learning. These ac-
tivities, however, may not always yield productive outcomes due
to the diversity of student mental models and their ineffective col-
laboration. In this work, we introduce VizGroup, an AI-assisted
system that enables programming instructors to easily oversee
students’ real-time collaborative learning behaviors during large
programming courses. VizGroup leverages Large Language Mod-
els (LLMs) to recommend event specifications for instructors so
that they can simultaneously track and receive alerts about key
correlation patterns between various collaboration metrics and on-
going coding tasks. We evaluated VizGroup with 12 instructors in
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a comparison study using a dataset collected from a Peer Instruc-
tion activity that was conducted in a large programming lecture.
The results showed that VizGroup helped instructors effectively
overview, narrow down, and track nuances throughout students’
behaviors.
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1 INTRODUCTION
Students’ active collaboration with peers while learning can pro-
mote engagement, deepen their understanding of concepts, and
enhance their problem-solving skills [55]. In Computer Science
Education, peer learning activities such as group discussions [41],
pair programming [50], code reviews [24], peer instruction [16],
and peer assessments [56] have been employed to foster coopera-
tive learning environments. Peer Instruction (PI), for example, is
an in-class instructional strategy that emphasizes students’ active
construction of a conceptual understanding with their peers [16].
During peer instruction, students first individually respond to a
question (i.e., write and submit their code independently), then dis-
cuss their code with peers, modify their code, and finally re-submit
it. Peer instruction has been shown to be effective at reducing fail-
ure rates, improving retention, and enhancing exam performance
across various fields, including computer science [6, 38, 46, 48, 54].

Although numerous studies have highlighted the benefits of
PI, prior work has advocated for guidance during peer collabora-
tion [59] and recommended that teaching staff should manage pair
interactions in programming labs [61]. Yet, it is challenging to de-
sign effective management tools to assist instructors in conducting
PI activities in large programming classes where large volumes of
data about groups can be generated. We argue that this is largely
because the interplay between discussion and learning outcomes
during a PI session has received less attention, making it difficult
to identify and observe meaningful learner interaction patterns.
It is unclear if all discussions positively impact overall learning
outcomes or if ineffective communication can hinder progress [47].
By developing tools that enable instructors to better observe and be
aware of these interaction patterns, they could begin to understand
the relationship between discussion and learning outcomes in the
context of their specific courses.

Tools, such as visual analytics (VA), i.e., the combination of auto-
mated analysis and interactive visualizations, have shown promise
in identifying patterns in large-scale data [9, 34, 35]. While most
visual analytics (VA) tools support offline analysis of previously col-
lected data, they often lack real-time analysis capabilities [11]. This
limits instructors’ ability to provide immediate, data-driven inter-
ventions that could enhance collaborative performance, particularly
when unexpected behavior patterns emerge. Other systems, such
as Groupnamics [52] and Pair-Up [63], have explored the effects

of real-time collaboration analytics, but they did not adequately
address the need to analyze the relationship between group collab-
oration and learning outcomes at scale. The increasing volume and
complexity of data generated during collaborative learning activi-
ties can overwhelm instructors, hindering their ability to identify
and track events that demand time-sensitive attention. Meanwhile,
recent advances in Large Language Models (LLMs) have demon-
strated the potential to perform real-time data analysis at scale, but
it is unclear how to effectively use LLMs to organize and present the
information in an intuitive way for collaborative learning analytics.

To investigate the specific design needs and challenges instruc-
tors face, we deployed a technology probe in a large programming
class (100+ students) where the instructor conducted a PI coding
exercise. Our exploration highlighted that (1) instructors need to
be able to easily track multiple patterns of correlation between
collaboration and the coding exercise in real-time, (2) they need
to be informed about emerging patterns in group activity over
time, and (3) they need to be able to get a sense of how interaction
patterns correlate with the future success of the groups. These find-
ings underscore the importance of designing systems that support
instructors in managing collaborative learning environments by
enabling them to monitor multiple types of information without
being overly constrained by a prescribed approach.

Based on these findings, we developed VizGroup, an LLMs-
assisted system that streamlines the process of overseeing real-
time collaborative learning analytics during a programming lecture.
VizGroup displays and updates a 2D scatter plot that visualizes
collaboration information and students’ performance in near real-
time. After inputting user interactions (e.g., clicking on a topic) and
urgent patterns found in historical data (e.g., groups not chatting
after a new code issue occurs) into an LLM, VizGroup will proac-
tively recommend notifications (i.e., intelligent monitoring units)
that track specific metrics and alert users to important changes or
patterns in the data.

To assess VizGroup’s usability and effectiveness, we conducted
a between-subject study with 12 participants with teaching ex-
perience. Participants used a basic visual analytics tool without
a notification system and then used VizGroup with or without
our LLM recommendation notifications. The results showed that
compared to a version of VizGroup without the notification rec-
ommendation, VizGroup with suggested units helped instructors
create additional monitoring units that were previously undiscover-
able on their own. These recommendations covered a more diverse
range of metrics, providing a more comprehensive understanding of
the learning process. Furthermore, we found evidence that the sug-
gested notifications influenced the participants’ decision-making
when selecting the following monitoring unit criteria. Our research
makes the following contributions:

• Design implications from our formative study that aim to enhance
instructors’ capacities to monitor and comprehend class-wide
collaboration dynamics as they occur.

• A new approach that uses contextual information, such as user
interactions and real-time data changes, to generate recommen-
dations for tracker and alert creation for novices while using
real-time learning visual analytics.
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• VizGroup, a novel AI-assisted monitoring system for collabora-
tive learning analytics that streamlines the monitoring of key
patterns in data via intelligent, context-aware notification cre-
ation.

2 RELATEDWORK
This section reviews four research fields that inspired our work:
collaborative learning, learning analytic systems, collaboration an-
alytic systems, and notification systems.

2.1 Collaborative Learning
Collaboration plays a pivotal role in educational policy, research,
and technology [23], with teams becoming the model of choice to
foster economic competitiveness, improve quality of life, and ensure
national security [20]. In education, decades of research have shown
that collaborative learning can increase student motivation by en-
gaging students in active, hands-on activities (e.g., discussions) that
are complemented by immediate peer feedback [60] Studies have
consistently demonstrated that collaborative learning approaches
yield greater learning gains than traditional methods, which often
rely on passive lectures and standardized exams [26, 51]. Dowell et
al. have developed methods to identify individual roles in collab-
orative learning contexts to gauge socio-cognitive behaviors [19].
Additionally, systems like PeerStudio [37] and TalkAbout [36] capi-
talized on peer feedback to improve student performance inMOOCs
by strategically connecting peers based on their performance and
geographic locations.

Even with such interventions, the efficacy of collaborative learn-
ing is not guaranteed. An examination of peer discussions in a large
introductory Astronomy course revealed that a significant portion
(i.e., 37.7%) were unproductive, highlighting the common pitfalls of
unsupervised conversations [32]. Further research into students’
help-seeking behaviors has shown that novices often struggle to
pose well-formed questions due to their incomplete mental mod-
els and lack of the tools to effectively seek help, even when they
understand the subject matter [12–14]. Unfortunately, instructors
may not become aware of these challenges until it is too late, if at
all. Therefore, there is a pressing need to track group activities in
real-time to enhance the quality of collaborative learning experi-
ences. VizGroup addresses these critical gaps by providing in-depth
analytics of collaborative learning behaviors to enhance the man-
agement and facilitation of collaborative dynamics in large-scale,
co-located programming learning settings.

2.2 Learning Analytics
Learning analytics, an emerging field that focuses on analyzing and
visualizing learner data to enhance educational outcomes, provides
educators with a fresh perspective on understanding and improv-
ing the learning process [15]. This discipline has been an active
research area in the past decade in the HCI community as a result
of the substantial growth in the amount of data available about
learners, and it is connected to management strategies that empha-
size quantitative measures. Our project builds upon the foundation
laid by prior research in learning support and analytics systems,
which have been instrumental in enhancing the understanding of

students’ learning performances. These systems can be broadly
categorized into two settings: synchronous and asynchronous.

Synchronous Settings. In real-time analytics, tools like Lu-
milo [30], VizProg [64], and Codeopticon [25], have offered instruc-
tors live insights into student activities such as coding and doing
math on their computer. Other tools such as EduSense [2], Affec-
tiveSpotlight [45], and Glancee [40] assessed student and audience
facial or body gestures to provide new analytics to instructors.
These studies found that providing instructors with rich data about
their students’ statuses can reveal key insights about their level of
engagement, which helps instructors better manage the challenges
of large class sizes. These tools, however, only focus on students’
individual activities and did not consider the collaborative aspects
of live classroom settings.

Asynchronous Setting. In contrast, asynchronous learning ana-
lytics systems like Overcode [22], Foobaz [21], and MistakeBrowser
and FixPropagator [28] have excelled at generating personalized
feedback for clusters of student submissions that displayed similar
patterns. Although beneficial for learning, these systems primarily
concentrated on individual student achievements without consid-
ering the broader social context of learning.

2.3 Collaboration Analytics
The HCI and Education communities have advocated for collabora-
tion analytics systems that are theoretically grounded, adaptively
capture comprehensive interaction data, model collaboration sensi-
tively to context, respect users ethically, and provide customized
support catering to the distinct characteristics of individuals and
groups [53]. Instructors, however, often face challenges while mon-
itoring and guiding group discussions as they may not have access
to adequate information about a group and its members or are
unable to constantly facilitate conversations.

Prior work, such as Pair-Up [63], explored collaboration analyt-
ics by examining the transition behaviors of K-12 students from
individual to group learning. Groupdynamics [52] provided a sum-
mary of the vocal activities and statuses of up to 10 small discussion
groups. While these systems provided valuable insights into collab-
oration dynamics, they focused on prescribed metrics and lacked
support for discovering the emerging correlation patterns between
collaboration and the tasks that people are working on.

Prior work [10] and our formative study (Section 3) have sug-
gested the need to support the correlation between working tasks
and collaboration metrics. Moreover, existing collaboration analyt-
ics tools often lack guidance on how instructors should prioritize
their attention. Researchers have suggested a more flexible notifi-
cation system that enables users to customize the group behaviors
they wish to monitor and receive alerts about, such as group status.
Additionally, keeping track of multiple visited groups and their
descriptions is mentally taxing for instructors [52]. VizGroup aims
to fill these gaps by providing instructors with the ability to analyze
the correlation between collaboration dynamics and the tasks stu-
dents are working on, and to easily create notifications and alerts
about insightful patterns.
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2.4 Notification Systems
Notification is an important feature in today’s software systems.
It allows users to receive relevant updates more timely. Common
examples include monitors and alert functions in medical systems
that are designed to support doctors in receiving time-critical de-
cision support [43, 44], and email and message notifications in
mobile applications that are designed to help users stay aware of
personal matters [39]. There were also works on providing real-
time notifications and feedback in classrooms to enhance teachers’
awareness [42] and support teachers’ orchestration [58]. However,
these works often focus on the impact that notifications have on
users’ work and well-being, such as work disruption, and the ap-
propriate time to receive notifications [3, 29]. In contrast, we look
at how to help users choose and create notifications to optimize
their resources or effort in real-time.

Recent LLMs may help process this massive number of multi-
faceted data in real-time. However, it remains unexplored how
to effectively leverage LLMs in notification systems that support
users in identifying urgent information to monitor for allocating
help-seeking resources. Our work takes inspiration from prior no-
tification systems and fills this gap by exploring the use of LLMs to
generate context-aware notifications in collaborative learning envi-
ronments, enabling instructors to efficiently manage and support
students’ learning experiences.

3 FORMATIVE STUDY
Due to the lack of real-time large-scale collaborative learning VA
systems, we deployed a technology probe [31] to explore the po-
tential informational needs of instructors and the corresponding
design challenges. To discover design considerations and derive
interface designs for our probe, we first conducted semi-structured
interviews with four experienced instructors of large programming
courses at our institution. These need-finding interviews focused
on the types of information instructions desired in real-time during
the group discussion activity and the decisions they aimed to make
based on this information. We found that instructors desired to
discern patterns in code and group discussions and their interplay
in how discussions aided students in resolving their issues.

3.1 Probe System Design
In response to interview findings, we developed a probe VA system
that collected student code submissions and evaluated their correct-
ness using unit tests. It used an LLM to summarize students’ chat
messages in group activities and presented the information using
an individual and a group-level visualization, along with students’
task progress and errors.

To analyze the student discussions in each group, messages were
tagged individually and the conversation was summarized. To de-
fine meaningful patterns, we draw upon principles from social
interdependence theory [33], which posits that effective collabora-
tive learning is characterized by promotive interactions that occur
as individuals encourage and facilitate each other’s efforts to reach
the group’s goals (such as maximizing each other’s learning). Based
on the theory, all chat messages were tagged by GPT-4 using 6 cat-
egories: 1. Help-giving, 2. Help-seeking, 3. Exchanging information
and feedback, 4. Joint reflection on progress and process, 5. Mutual

encouragement and challenging, 6. Not related to the class. GPT-4
tagged each message in real-time and displayed the tag below each
chat message (Fig.2.4b). Furthermore, the main topic discussed in
each group conversation was summarized by GPT-4 every time a
new message was sent in the chat (Fig.2.4a), thus enabling instruc-
tors to obtain an overview of the conversations among different
groups without having to read all the chat messages.

To enable instructors to efficiently track information in real-time,
the probe included a live visualization of individual and group lev-
els (Fig.2.5a). On an individual level, the probe calculated students’
activity scores based on their chat history. Each message from cate-
gories 1-5 contributed 1.0 to the activity score, and each category 6
message contributed 0.3 to the score. For the group level, the score
was computed as the average activity score of all group members.
The activity score of each group was represented as a scatter plot
dot, where the y-axis was the activity level of the group and the
x-axis denoted the unit test pass rate. Participants could manually
select a dot to view detailed student or group information or select
a range to track multiple students or groups (Fig.2.5b).

3.2 Methodology
We recruited 8 participants with experience teaching programming
courses to participate in our within-subject study where they eval-
uated the probe and a baseline system. Participants then completed
a survey and interview. We captured an in-class peer instruction
session from a large-scale introductory university programming
course (i.e., 111 students, 37 groups) and used its live playback dur-
ing the study. The baseline condition was an ablated version of the
probe without the group discussion visualization and intelligent
features like discussion topic summary, team activity level, and
message tags (i.e., without 4a, 4b, 5a, and 5b in Figure 2), similar to
existing educational VA systems.

For each condition, participants were asked to complete four
tasks (Appendix B), designed to evaluate instructors’ understanding
of student and group progress and dynamics based on the insights
from the need-finding interviews. Each task required participants
to experience a segment of the recorded instruction session. Three
tasks involved identifying patterns in a group discussion and stu-
dents’ help-seeking using the visualization system. One open-ended
task asked participants to identify any issue they found important as
instructors. The system conditions and tasks were counterbalanced.

3.3 Results and Design Considerations
To analyze the results, we calculated the correctness of the iden-
tified trend (i.e., a particular student’s or group’s task pass rate
and discussion increased or decreased over time), and the precision
and recall of the classification tasks (i.e., identify all the students
that have engaged in group discussions over a period of time). For
Task 1, a T-test found no significant difference in the precision
(𝑝 = 0.11) and recall (𝑝 = 0.44) between the two conditions. For
Task 2, participants had a higher recall using the probe (Probe:
𝑀𝑒𝑎𝑛 = 0.990, 𝜎 = 0.029; Baseline: 𝑀𝑒𝑎𝑛 = 0.742, 𝜎 = 0.200, 𝑝 <

0.01), while the precision was on par for both conditions (𝑝 = 0.96).
We also found that participants had better accuracy while tracking
and understanding group dynamics trends during Task 3 while

陈言
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Figure 2: The technology probe’s user interface. (1) Code issue list aggregated code errors based on student code submissions.
(2) the class performance of the number of student passing each unit test. (3) A student activity panel that showed the activity
level and pass rate of each group and group member. The chat panels contained the chat history of the selected group, (4a)
a summary of the conversation and (4b) the tagged chat message (in blue) as summarised by the LLM. (5a) The scatter plot
that visualized students’ activity level and could be toggled between individual view and student view. (5b) Instructors could
examine multiple data points by highlighting a region and (6) each data point would be displayed in the Group List panel. (7)
Each session could be reviewed via playback controls.

using the probe (𝑀𝑒𝑎𝑛 = 0.875, 𝜎 = 0.173) than the baseline sys-
tem (𝑀𝑒𝑎𝑛 = 0.667, 𝜎 = 0.178, 𝑝 < 0.05). We did not find a sig-
nificant difference in the time spent completing the tasks (Probe:
𝑀𝑒𝑎𝑛 = 1277.29𝑠 , Baseline:𝑀𝑒𝑎𝑛 = 1244.86𝑠 , 𝑝 > 0.05).

We also coded the issues participants recorded during the open-
ended quiz task (Task 4), and distinguished between two types
of descriptions: general and detailed. Participants identified more
issues overall with the probe (𝑀𝑒𝑎𝑛 = 3.000, 𝜎 = 0.930) than
with the baseline (𝑀𝑒𝑎𝑛 = 1.875, 𝜎 = 1.130, 𝑝 < 0.05). The re-
sults also showed that participants identified more detailed issues
using the probe (𝑀𝑒𝑎𝑛 = 2.000, 𝜎 = 1.200) than the baseline
(𝑀𝑒𝑎𝑛 = 0.500, 𝜎 = 0.760, 𝑝 < 0.01). Specifically, with the base-
line system, 4 participants described issues in a general way such as
"Syntax Error", and 1 participant could not describe any issue. While
with the probe, 7 participants were able to explore both the code
and the discussions, recording detailed issues such as "returning not
an int or wrong int from calculation".

From the post-study survey and interviews, we found that the
probe’s ability to present discussion topics and activity levels prompted
participants to investigate patterns starting from group engagement
down to student-level coding challenges. 6 participants (P1, P3, P5,
P6, P7, P8) reported discussion topic as one of the "most satisfying"

features because it is "very useful for instructor to find the common
issues" without “checking it one by one” (P6). P4 also suggested that
activity levels addressed the issue of “a little bit nervous (seeing) au-
tomatically generated topics”. Moreover, participants reported that
the probe’s high-level information display and visualization features
“provided about what was going on in the class.” (P5) and “allow me to
quickly overview the status of the students, and help me easily identify
the student who is struggling” (P2). These features streamlined the
process of monitoring and analyzing collaborative learning dynam-
ics, thereby facilitating a more nuanced understanding of student
and group performance over time.

However, the probe demanded higher cognitive loads as partici-
pants needed to manually keep track of an identified pattern over
time, making the observation unscalable to monitor multiple pat-
terns (e.g., students who were not engaging, students who lacked
support, etc.). P6 stated that “sometimes I forget some of the students’
performance before that I can’t tell if the pass rate was increased.”
Participants also mentioned the importance of focusing on a “level
or window” when inspecting students and groups “that can make
it more efficient as we are not distracted by other information” (P5).
In addition, different patterns were relevant in different contexts.
For example, initially, students may not be engaged in a discussion
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Figure 3: VizGroup’s User Interface. (1) Scatterplot displays student’s progress via group view, group structure view and individual
view. (2) Suggested notification panel that displays context-aware notification suggestions and user-defined notifications. (3)
Active notification panel that displays active trackers and alerts. (4) Class performance that shows the number of students that
passes each unit tests. (5) List of Details on group conversation topic and student error messages. (6) Group information panel
that shows group and individual activity. (7) LLM summary of student conversation and conversation history. (8) Each session
can be controlled with playback.

as they work on a coding task, but this idleness could become an
issue once everyone else has submitted their code. The context de-
pendency prompts a design that would enable contextually-aware
pattern discovery andmonitoring in the next iteration of our system
design.

4 DESIGN GOALS
Our formative study revealed two primary effects driving our DGs:
(1) instructors used different levels of information scope to under-
stand student progress, and (2) instructors were overloaded when
tracking progress and providing support. Based on these findings
and the key challenges identified in prior work, three design goals
guided the iterative development of VizGroup to support instruc-
tors in being able to easily monitor collaborative learning in large
programming classes.

• DG1. Efficient and contextualized navigation across dif-
ferent levels of granularity. To enable instructors to identify
patterns of concern in real-time using interactive learning analyt-
ics, the navigation process must be both efficient and adaptable
to different levels of granularity, allowing seamless transitions
between individual, group, and class-wide perspectives.

• DG2. Real-time and attention-free monitoring. To address
the overload instructors experienced when trying to follow the
progress of parallel groups, there is a need for a system that offers
real-time, attention-free monitoring, along with mechanisms to

selectively guide their attention and minimize interference with
their workflow.

• DG3. Guiding instructors’ attentionwhile considering both
instructors’ and students’ needs in context. To avoid com-
pounding instructors’ overload with unnecessary interruptions,
mechanisms for guiding instructors’ attention (e.g., via notifica-
tions) must be context-aware, taking into account the needs of
both instructors and students.

With the three design goals in mind, we iteratively revised our
probe system to enhance instructors’ ability to navigate, track, and
set alerts to understand real-time collaborative programming learn-
ing patterns. The resulting VizGroup user interface has three main
panels (Figure 3): (1) a three-level view of collaborative learning
behaviors that offers insights into collaboration at varying lev-
els of abstraction; (2) a notification panel that display user- and
AI-suggested notifications; and (3) an information table that lists
metrics related to team activities and coding performance. These
panels are interconnected through data-binding, thus ensuring that
selecting a subset of data in one panel will automatically update
the corresponding views in the other panels.
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Figure 4: Overview of collaborative learning visualization with Group, Structure, and Individual Views, switchable by zooming.
Features: (1) Area highlight for inspecting multiple points, (2) History trace of data points upon selection, (3) Structure View
plots participants against conversation topics, (4) Group data point location changes with topic or participation shifts, (5)
Arrows indicate participation levels, (6) Flashing effect for changes in pass rates or interactions.

5 VIZGROUP
VizGroup was implemented as a web-based visualization tool using
React and D3.js for its core functionality and OpenAI’s GPT-41 and
text-embedding-3-large2 for specific features.

As VizGroup expanded on the probe VA system, it shared sim-
ilar features including (1) a chat panel that utilized the LLM to
analyze group and individual activity (Figure 3.7 and 2.3), an LLM
summary of group discussion topics (Figure 3.6 and 2.4a,b) and a
class performance panel (Figure 3.4 and 2.2). We also modified the
detailed information table to display an aggregated list of conversa-
tion topics when the Group view was selected on the scatterplot or
an aggregated list of student code errors when the Individual view
was selected on the scatterplot.

During a class session, VizGroup recorded data on an individual
student and on a group level (Table 1). On an individual level, Viz-
Group tracked each student’s pass rate, activity level, and type of
code errors. On the group activity level, it tracked the average pass
rate of the group, the activity level of the group, the group’s conver-
sation topic, and the team structure of the group. We chose these
five dimensions because of their critical importance, as highlighted
by previous research [52, 63, 65], and based on the preferences and
experience of instructors from the formative study and the data we
have. Pass Rate serves as a proxy for students’ progress in under-
standing and utilizing the learning objectives, while Activity Level
indicates students’ engagement in collaboration. Likewise, Team
Structure reflects students’ participation at a group level. Code Issue
highlights errors as identified by the compiler in their submissions,

1https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
2https://platform.openai.com/docs/models/embeddings

and Conversation Topic reveals what students encounter in their
collaborations.

5.1 Three Level View of Collaborative Learning
To facilitate the visualization of different levels of detail during
collaborative learning (DG1), VizGroup uses a three-level view en-
compassing high-level group performance and activty (i.e., Group
View), the mid-level group interaction structure (i.e., Structure
View), and low-level individual performance and activity (i.e., Indi-
vidual View). Based on the findings from the preliminary studies,
each view was designed to reveal specific patterns and insights
about the collaborative learning environment and highlight key
behavioral analytics that were identified in our research.

Figure 5: Clicking on a group data point displays its informa-
tion summary panel, and activity and performance table.

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/embeddings
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5.1.1 Group View: This view presents an aggregated perspective
of the group’s collaborative interactions, enabling instructors to
gauge the average group activity level (y-axis) and average group
pass rate (x-axis) over time (Figure 4). By aggregating data over
collective activities, this view facilitates an understanding of group
dynamics and collaborative patterns at a glance.

5.1.2 Structure View: This view maps the current topics of dis-
cussion (x-axis) against the number of active members in a group
(y-axis), offering a detailed snapshot of group dynamics (Figure 4.3).
We implemented a topic modeling approach to assess the relevance
of each chatmessage and to distill the overarching subjects of discus-
sion. Initially, we utilized an LLM to generate text embeddings for
each conversation, which serve as a nuanced representation of the
discussions’ content. These embeddings were then clustered using
the K-means++ [4] algorithm, a method chosen for its efficiency and
reliability in grouping semantic word representations [18]. For each
identified cluster, we produced a concise summary that captures
the essence of the conversations within. To ensure a streamlined
and coherent compilation of conversation topics, we compared
new summaries with existing ones. If a newly generated summary
closely matched any of the previously established summaries, we
classified it under that pre-existing category.

We integrated graph representations and incorporated indicators
of activity levels directly within the view to simplify the analysis
process for instructors. As the activity levels or the discussion
topics change, each group cluster data point will transition to a
different position of the visualization (Figure 4.4). Each group’s
communication pattern is also depicted using arrows to indicate
the sender and the recipient of chat messages, with the arrow’s
thickness representing the level of activity amongst group members
(e.g. no messages , few messages ,many messages ;
Figure 4.5). The thickness of the arrow is calculated by:

min(𝐴 × 0.25, 2) + 1

where A is the activity level of the individual. The green dots indi-
cating that students passed all unit tests, whereas the pink indicated
they did not fully pass all unit tests. When there were updates to the
group conversation topics or the number of active members, a flash-
ing animation was applied to the changed data point to catch the
instructor’s attention (Figure 4.6). To prevent information overload,
VizGroup displayed up to eight group structures with the lowest
pass rate simultaneously. Expanding the lowest performing groups
would enable instructors to identify if group activity contributed
to the low pass rates.

5.1.3 Individual View: This view enables instructors to assess each
student’s engagement (y-axis) and performance (x-axis) closely
(Figure 4). It was designed to highlight individual behaviors, such
as students who might be struggling or feeling excluded, in rela-
tion to their peers’ progress. This view aids instructors in quickly
identifying students in need of additional support or those who are
excelling and can potentially serve as resources for their peers.

5.1.4 Interaction. To support seamless navigation across these
views (DG1), VizGroup enables instructors to zoom in and out.
Selecting a region (Figure 4.1) or clicking on a data point provides
further insights in the detailed information list and the group details

panel (Figure 5). Clicking on a data point will also show the trace
history of the selected data point, which enables instructors to view
changes in performance over time (Figure 4.2).

5.2 Notifications for Observing Student Activity
Inspired by Fluid UI, where an influx of information is structured
automatically to reduce the gulf of evaluation [49], we designed a
structured notification system that enables instructors to create and
customize notifications that alert them about key changes in student
activity that might require attention and intervention. Specifically,
we introduce the concepts of Tracker and Alert to help instructors
to observe changes in student progress.

Notifications are displayed as two columns: Suggested Notifica-
tions (Figure 3.2) and Active Notifications (Figure 3.3).Instructors
can add and edit existing trackers or alerts in the Suggested Notifi-
cation panel before activating it. After activation, the notification
will appear in the Active Notifications panel, where it will start
tracking real time data and push alerts based on instructor-specified
criteria.

5.2.1 Trackers (Figure 6). Trackers are visualizations that display
the current count of student activity attributes. Instructors can se-
lect a variable to be tracked by clicking on the highlighted attribute,
which will reveal three options: Code Issues, Conversation Topics,
and Members Participated (Figure 6.1). They can display the visual-
ization as a bar chart that shows the count of each values within
a specific attribute (e.g., Code Issues are grouped by the count of
different errors, Conversation Topics are grouped by the count of
different groups of conversation summaries whereas Members Par-
ticipated is grouped the the total number of active participants in
the group). They can also view a time-series line plot that displays
the changes in the different groups of the selected attribute from
the start of the session until the current time (Figure 6). Instructors
can toggle between the two visualization easily (Figure 6.2).

Figure 6: Trackers visualizes student activity data using bar
charts and line charts. (1) Instructors choose the student
activity attribute to be tracked and (2) can switch between
the two visualization.
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Student Group Description Range

Pass Rate ✓ ✓ The percentage of correct unit test passed by
each student or group

[0%, 100%]

Activity Level ✓ ✓ The level of participation in a group discussion
based on chat frequency

[0.0, 12.0]

Code Issues ✓ The code error message in each student sub-
mission

No Compiling Error, Type Error, Name Error,
Indentation Error, Index Error, Syntax Error

Conversation Topic ✓ Each group’s topic summary based on their ex-
isting chat messages. Individual conversation
topics is tagged by LLM (Figure 2.4b) but is not
used in visualization and notifications.

Varies, example topics include Correcting Func-
tion Logic and Syntax Errors, Troubleshooting
Code and EOF Errors

Team Structure ✓ The number of students active in each group [0,3]
Table 1: The student activity attributes that are tracked in VizGroup.

Figure 7: Alerts notify instructors if students/groups meets the defined criteria. (1) Count of data points/groups that matches
specified criteria, (2) Alert type (group or individual), (3) Notification creation reason, (4) Trigger criteria (modifiable via
highlighted area click), (5) Criteria selection drop-down menu, (6) Clickable current data points meeting criteria, displayed on
scatter plot and detail panels.(7) Instructors can change between using a spatial threshold or a temporal threshold. (8) Instructors
can preview data points on the scatter plot. (9) An alert activation confirmation is sent to the list of Active Notifications. (10)
Instructors can select the attributes to be included in the threshold. (11) Flashing Animation when alert is triggered.

5.2.2 Alerts (Figure 7). Drawing from previous research on the
use of visual aids to signal the current status of groups in online
breakout rooms and alerts that monitors abnormal activity in com-
plex systems [8, 52], Alerts function as a tool for tracking when
student behaviors or group interactions surpass limits set by in-
structors. They encapsulate the activity level, group conversation

topic, the collective pass rate, team structure for group analysis,
and code issues, activity levels, and individual pass rates for indi-
vidual analysis (Table 1). However, the alert card shows the alert
type (group or individual) (Figure 7.2), the reason why the alert is
created (Figure 7.3), the current criteria for the alert (Figure 7.4),
the list of data points that currently satisfies the criteria (Figure 7.6)
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Figure 8: Temporal Alert mechanism in 2-Dimension. Data
points which remained in the highlighted area for more than
2 minutes will be reported.

Figure 9: Spatial Alert mechanism. VizGroup will notify in-
structors when the number of data points in selected area
(10 data points) exceeds defined threshold (2 data points).

and the total number data points in the list (Figure 7.1). Instructors
can modify the types of activity attributes they want to be alerted
about (Figure 7.10). For each attribute, clicking on the highlighted
area reveals a drop down menu (Figures 7.4), allowing instructors
to modify its threshold values (Figure 7.5).

Alerts can be activated spatially or temporally. For spatially,
the alert is activated when the quantity of students surpassing
a predetermined threshold exceeds n (e.g., alert instructors when
the number of students that has a pass rate lower than 50% and an
activity level from 0 to 3 is more than 10; Figure 9). These alerts

Figure 10: User interaction with the UI creates suggested
alerts, displaying user clicks as the main reason for notifica-
tion generation (1). Interacting with data points in Structure
View suggest alerts based on the conversation topic and the
number of active members in the group (2). Interacting with
the detailed list of group topics would suggest topics based
on the expanded drop down (3).

are based on a 5-dimensional model of student activity attributes.
Instructors receive notifications when the number of students that
falls under the predefined student activity range, allowing for timely
interventions.

Temporally alerts are activated when specific groups or students
surpass the predetermined threshold for a duration exceeding t
seconds or minutes (e.g., alert instructors of all students that discuss
correcting function logic and syntax errors in their group conversation
and have a pass rate between 0% and 41% for over 2 minutes; Figure 8).
Consider setting an alarm clock, where a clock will sound when the
time is up. Alerts use a similar idea where each datapoint that meets
the user defined criteria has an internal alarm clock, keeping track
the amount of time they meet the defined criteria. When the time
is up for each individual datapoint, namely the period of time they
meet the criteria exeeds the user defined time, it will push an alert
which will display the datapoint to the instructor for further investi-
gation. After defining the alert criteria, a curated list of groups and
students that meets the threshold enables instructors to examine
associated group details (Figure 7.6). Moreover, VizGroup provides
an option for instructors to preview and visualize data points that
currently align with alert criteria, offering a macroscopic view of
the tracked groups’ spatial distribution (Figure 7.8). By clicking on
the time or number icons (Figure 7.7), instructors can transition
between these alert types.

After confirming the alert thresholds by clicking the green check
mark, the alert transitions to an Active Notification (Figure 7.9). The
alert then invokes a flashing animation to ensure that instructor is
aware of any updates (Figure 7.11).

5.3 Context-Aware Suggestions
With the rapidly changing nature of student behavior during a
large-scale activity, it could be challenging to monitor and create
notifications. Thus, VizGroup generates suggested alerts and track-
ers as templates to help instructors identify key patterns in student
activity that might be hard to notice by observing the scatter plot
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Figure 11: Workflow for generating Suggested Notifications.

and topic list of details. Suggested Notifications were generated
based on user interaction with the VizGroup interface and historic
changes in student activity data

5.3.1 User Interaction. VizGroup generates suggested notifications
for the scatter plot view currently in use. Specifically, group alerts
will be suggested when instructors are in group and structure view
and individual alerts will be suggested when instructor is in indi-
vidual view. Instructors could also create notifications by selecting
areas of interest on the scatter plot. When they click on a specific
data point, VizGroup derives a suggestion on student activity at-
tributes to be tracked based on the displayed view of the scatter plot.
For the Structure View, it would suggest alerts based on the selected
group conversation topics and the number of team members active
in the group (Figure 10.2). For the Group and Individual view, it
would suggest alerts based on group or individual activity level
and pass rate. When the instructor highlights an area in the scatter
plot, the x and y range of the selected area will be automatically
applied towards the suggested notification, enabling instructors
to select data points to keep track of through direct manipulation.
Instructors can use such suggestions as templates to further modify
alerts to suit their needs. Similarly, when instructors inspect the
rows of the aggregated topics and errors in the detailed information
table, suggestions are based on the expanded row (Figure 10.3).

5.3.2 Historic Student Activity Data. When instructors are tracking
more than 3 attributes that can’t be easily represented on a 2D
visualization or creating notifications that take into account historic
student activity, theymay neglect to consider recent student activity
that might be relevant. Hence, VizGroup leverages an LLM that
takes historic student activity data into account while generating
alert suggestions for instructors. Suggestions for individual student
and group data are processed separately, and depending on the
current view, group or individual related alerts will be suggested.
Here we outline the steps the LLM used to generate suggested
alerts using historical student activity data. The steps for suggesting
group and individual notifications are similar (see Figure 11), so we
outline the process of suggesting group notifications for the sake
of simplicity (see all used prompts in Appendix A).

Step 1: Identify Issues By Analyzing Historical Student Activity
Data. Following prior work on using LLM to identify challenges
in students’ learning and collaborations [57], we asked the LLM to
analyze each group’s history of submission attempts, group conver-
sation logs and current status data such as group pass rate, team
activity, the summarized group topic, and the number of members
participating in the group discussion. After this holistic evaluation
of group performance, we asked the LLM to identify specific issues
each group was facing. Some examples of issues were no active
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conversation despite submission attempts or groupmembers asking
for help but the conversation lacked problem solving.

Step 2: Rank Groups by Issue Seriousness. After identifying issues
across groups, we asked the LLM to rank each group based on the
severity of the issue, with major issues ranked higher and minor
issues ranked lower. Here a high severity issue is defined as an issue
that might require instructor and teaching assistant intervention,
while a low severity issue can be handled by students in the group.
Then, the LLM summarized the identified issue into one sentence
for each group. Based on prior work that used LLMs to perform
recommendation tasks, we adopted a list-wise ranking approach
to rank the identified issues to achieve a balance between cost and
performance [17]. The LLM also noted the most problematic issue
out of their pass rate, the relevance of their conversation to the task,
their topic of conversation, and their participation levels during
discussions.

Step 3: Use the Top 5 Groups for Summarization and Issue Catego-
rization. We then used the top 5 groups with the most severe issue
and asked the LLM to summarize the common problems found
across these 5 groups. Based on this summary, the LLM then identi-
fied which aspects of pass rate, the relevance of their conversation
to the task, their topic of conversation, and their participation levels
during discussions were present in the summary.

Step 4: Generating Suggestions for Alerts and Trackers. From the
extracted groups/students, we calculated the range of categorical
and numeric data for the alerts. For categorical data, we obtained
the set of all values found in the extracted groups/students. For
numerical data, we obtained the global minimum and maximum
across the 5 groups/students. For all annotated topics summarized
in Step 2, we then aggregated the count based on the pass rates, the
relevance of their conversation to the task, the topic of conversation,
and participation levels during discussions in the summary, and
tracked the most frequent categorical data.

The primary objective of utilizing LLMs in the suggestion gener-
ation process is to identify complex patterns in students’ code and
text-based discussions, transforming these into easily inspectable
suggestions to support instructors’ learning analytics. To enhance
accuracy, we also adopted state-of-the-art prompting engineering
techniques such as few-shot prompts [7] and AI-chains [62].

6 SYSTEM EVALUATION
We conducted an in-person user study to examine VizGroup’s us-
ability and effectiveness. We also investigated participants’ expe-
riences when using VizGroup’s suggestion feature by including a
condition of VizGroup’s ablated version in the study.

6.1 Participants
We recruited 12 participants (5 females and 7 males) who had ex-
perience teaching programming courses at four-year universities
via personal networks, local mailing lists, and snowball sampling.
During the study, participants were asked to interact with Viz-
Group under different conditions to inspect student behavior that
was collected in a large programming course at our institute. Each
participant was compensated with $25 USD for their time and effort.

6.2 Protocol
6.2.1 Live Simulation. During the study, participants watched live
playback of the session to simulate a real-time, in-class peer instruc-
tion session. To ensure the data participants interacted with was
authentic, we used real data captured from a large-scale introduc-
tory level university programming course’s peer instruction session
that contained 111 students that were divided into 37 groups. The
grouping strategy was to gather students who passed the test with
those who did not and ensure each group had at least one student
who passed the test. During the peer instruction process, students
accessed the system through their laptops. They were not able to
see group members’ real names and their code submissions. The
programming exercise for the session was an introductory Python
problem to count the number of elements under 100 in a given list
of numbers.

6.2.2 Conditions. We used a mixed study design that incorpo-
rated both within-subject and between-subject methods, where
each participant used the system under two of the following three
conditions:

• Baseline (A): a baseline version of VizGroup without any intelli-
gent or automatic features such as notifications, topic summaries,
and team activities (i.e., without (2), (3), and topics in (5) and (7) in
Figure 3. The system still contained the interactive visualization.

• VizGroup without suggested notification (B2): an ablated
version of VizGroup without the context-aware suggestion fea-
ture. This version still had the notification feature, but all notifi-
cations needed to be manually created.

• VizGroup (B1): a full AI-assisted version of VizGroup with all
its features. Notification suggestions are dynamically generated
in B1. Interaction-based suggestions were triggered by users’
interaction, while the system displayed a new historic-based
suggestion every 15 seconds.

6.2.3 Tasks. All participants completed two types of tasks:

• Quiz. Each quiz contained two classification questions:
– Q1: Identify students who have not passed the test and only
sent irrelevant messages in the chat.

– Q2: Identify groups with specific difficulties and track those
who were stuck for two minutes.

• Open-ended task. Each participant was asked to create notifi-
cations to identify students or groups that needed a TA to help
them while monitoring the class for two minutes.

The quiz questions were designed to evaluate the system’s abil-
ity to enable participants to overview, narrow down, and track
nuances throughout the class. The open-ended task sought to eval-
uate participants’ experiences with the customized usage of the
notification feature to track students’ behavior and groups’ interac-
tion over time. These questions were derived from our formative
study and iterated on. While participants watched the playbacks
from one session under both conditions, we used the same clips
from the playback for open-ended tasks (between-subject) and used
different clips with counterbalanced order for the quiz questions
(within-subject) to reduce overhead costs (e.g., getting familiar with
an exercise). We also counterbalanced the conditions to reduce
potential learning effect.
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Figure 12: Survey responses after the open-ended tasks. For the NASA-Task questions [27] (up), 1 indicated very low levels of
mental demand, temporal demand, successful performance, effort, and frustration. For the ease of use and usefulness questions
(down), 1 was very negative and 7 was very positive.

6.2.4 Study Procedure. At the beginning of each study session, the
study coordinator collected informed consent from the participant.
Then, the study coordinator gave an explanation of the context of
the data and the tasks used in the study. Following this, partici-
pants completed two quizzes under two assigned conditions after
watching the tutorial of the corresponding system and warming up.
After that, participants were asked to work on the open-ended task
with the condition equipped with the notification feature. Addi-
tionally, they completed a short survey with Likert scale questions
and participated in a semi-structured interview after each quiz and
open-ended task. Participants were asked to think aloud during the
open-ended task and the surveys. Each session took around 60-75
minutes. All study sessions were screen- and audio-recorded.

6.3 Results
6.3.1 Quantitative Results. We combined the results from the two
conditions (B1, B2) with the notification features as the quiz ques-
tions did not involve the use of the historic-based suggestions (Table
2). The results showed that participants who used VizGroup had
shorter times, higher recall, and higher precision on Q1, and signif-
icantly shorter time and higher recall on Q2.

In the open-ended tasks, participants using VizGroup received
18.26 (𝜎 = 1.21) notification suggestions on average. Among all
the suggestions, there were 13 types of notifications categorized by
activity attributes while 11 of them were accepted by participants.
Participants created more notifications for both students (VizGroup:
𝑀𝑒𝑎𝑛 = 2.67, 𝜎 = 1.37, VizGroup without suggestion: 𝑀𝑒𝑎𝑛 =

2.00, 𝜎 = 1.26) and groups (VizGroup: 𝑀𝑒𝑎𝑛 = 3.00, 𝜎 = 2.10,
VizGroupwithout suggestion:𝑀𝑒𝑎𝑛 = 2.50, 𝜎 = 1.64). In total, there
were 25.93% more notifications created using VizGroup (VizGroup:
𝑀𝑒𝑎𝑛 = 5.67, 𝜎 = 3.44, VizGroup without suggestion: 𝑀𝑒𝑎𝑛 =

4.50, 𝜎 = 2.81). There was not a statistically significant difference
in the number of created notifications. Of 5.67 created notifications
using VizGroup, 2.50 (𝜎 = 2.95) of them are from historic-based
suggestions, 2.67 (𝜎 = 1.21) of them are from interaction-based
suggestions, and 0.50 (𝜎 = 1.22) are manually created.

Condition Q1 Q2
Time Prec. Recall Time Prec. Recall

Baseline 348 0.72 0.73 338 0.97 0.82
VizGroup 224∗ 0.98∗∗ 0.96∗∗ 251∗∗ 1.00 0.98∗∗

Table 2: Quiz Performance (Time in seconds). The best results
for each condition is in bold. ∗ indicates 𝑝 < 0.05, while ∗∗
indicates 𝑝 < 0.01.

6.3.2 Context-Aware Suggestions Facilitated Awareness of Unex-
pected Patterns. Based on our observation and the think-aloud pro-
cess, we found that participants (P3, P9, P11) not only adapted
suggested notifications so that they aligned with their mindsets,
but also accepted those different from their initial strategy. For
instance, P3 stated “I care about the pass rate, not the type of code
issues” at the beginning of the notification creation phase. However,
this participant’s mind was changed after inspecting the suggested
alert that contained criteria about a Code Issue. The participant
accepted the suggested criteria since the selected students within
the notification “makes sense”. Moreover, in the following moni-
toring process, the participant created more notifications for Code
Issue, which was the criterion the participant did not want to pay
attention to at the start.

We also noticed that participants exhibited a low level of mental
demand (𝑀𝑒𝑑𝑖𝑎𝑛 = 2.00, 𝜎 = 1.38) using VizGroup, while those par-
ticipants who used VizGroup without suggestion gained a medium
level of mental demand (𝑀𝑒𝑑𝑖𝑎𝑛 = 3.50, 𝜎 = 1.94) to complete the
open-ended tasks (Figure 12).

6.3.3 Context-Aware Suggestions Increased the Diversity of Noti-
fications. During the open-ended tasks, the notifications created
with VizGroup were 35.14% more diverse than the ablated version
of VizGroup (Number of notifications containing different types
of criteria–VizGroup: 𝑀𝑒𝑎𝑛 = 4.50, 𝜎 = 2.66, VizGroup without
suggestion:𝑀𝑒𝑎𝑛 = 3.33, 𝜎 = 1.63; not statistically significant). For
instance, before inspecting the suggested notification, P3 only cre-
ated a notification about Pass Rate and Activity Level, however, after
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inspecting and adapting suggested notifications, P3’s notifications
covered all of the criteria.

In contrast, P5 created 3 notifications for students using Viz-
Group without suggestion. However, among these notifications,
the only difference was in the categories selected for Code Issues.
P5 followed the same scope during the notification creation pro-
cess, which was how most participants (P2, P4, P5, P8) commonly
worked with VizGroup without suggestion.

6.3.4 VizGroup Aided Instructors In Identifying and Tracking Pat-
terns and Work in Parallel. For Q2, most participants who used
VizGroup checked other groups’ behaviors, while most participants
who used the Baseline kept monitoring the required groups, i.e., “It
is not that hard for me to monitor a group (with the same patterns)
of students, but it would be impossible if there are multiple groups
to track.” (P4). As P3 suggested, with the notification system, in-
structors “could set alerts so that (they) don’t need to look at those
conditions all the time.”

Nine participants mentioned the notification (with or without
suggestion) would be helpful to “teach a 100/200 people programming
class”. “(VizGroup) Makes it much more convenient and feasible so
you don’t have to keep checking.” (P10).

A lower level of temporal demand (𝑀𝑒𝑑𝑖𝑎𝑛 = 1.00, 𝜎 = 0.51) was
reported with the notification suggestions feature, compared to
using the VizGroup without suggestion (𝑀𝑒𝑑𝑖𝑎𝑛 = 2.00, 𝜎 = 1.47),
however, this difference was not statistically significant.

6.3.5 VizGroup Enables Instructors to be Prepared Before Sending
Support. Participants (P2, P3, P6, P9) also found that based on the
meaning of the constraints applied to the alert, they could make
more sense of how to help students with different types of diffi-
culties. P6 suggested that “The topics filter can help professors/TAs
prepare beforehand to help students instead of just going up to them
and asking what they’re struggling on.”, while P9 also expressed “hav-
ing different alerts to monitor different groups of students’ behavior,
so I can tell TA who can offer help in those different situation.”

7 DISCUSSION
Our study revealed several interesting insights about the automatic
creation of notifications to assist with the monitoring of student
progress in large classes. These insights related to instructor work-
flows, instructor decision making, and long-term student benefits
of using such systems.

7.1 VizGroup’s Impact on Instructor Workflows
Instructors often tend to follow their mental model to set specific
constraints to identify students’ behavior in peer instruction ses-
sions. However, instructors’ strategies and workflows may vary
from the monitoring system’s intelligence level. For instance, in our
baseline system, participants had to manually browse and process
most of students’ behaviors and interactions, while in the VizGroup
without suggestion, participants began by using abstraction data
(e.g., Conversation Topic, Activity Level). Based on the study results,
when the system starts to generate things beyond summarization,
e.g., providing users with suggestions, instructors’ strategies to
identify students can also be influenced.

This is consistent with findings in Explainable AI, which re-
ported that the misalignment of decision-making criteria can affect
users’ levels of reliance on AI’s recommendations [5]. Ideally, we
want instructors using VizGroup to perform better than either AI
or themselves alone, yet this may be elusive due to the dynamic
context in a classroom setting. Our study findings suggest that
instructors are influenced directly and indirectly by exposure to
the recommended notifications while still maintaining their own
control over creating them. This provides new perspectives on
human-AI collaboration in real-time data analytics tasks.

7.2 Supporting Instructors’ Decision Making
Beyond tracking students’ particular behavior and learning barriers,
VizGroup might also provide instructors with a way to make sense
of students’ issues and suggest a solution regarding students’ issues.
Prior work has shown that observable signals such as code com-
pletion or test case pass rates may not always align with students’
actual understandings during PI [47]. VizGroup’s recommended no-
tification adapts to students’ history data using students’ behavior
level information, providing instructors with insights from different
perspectives.

7.3 Long-Term Student Benefits
VizGroup provided an opportunity for instructors to create diverse
notifications and probe behavior patterns that were different from
the instructors’ common scope of behavior identification. This is
helpful because prior work has suggested that with diverse mental
models, students will often encounter new mistakes even on the
same coding problem [1]. VizGroup shows that it can support in-
structors in identifying alternative learning patterns by adapting to
students’ behaviors in real time, helping students to be more likely
to receive personalized feedback.

7.4 Limitations
There are several limitations to our user study. While we used au-
thentic code and peer discussion data, we conducted the study in
a simulated setting rather than in a real living classroom, which
reduced the psychological intensity and potential for distraction
among participants. Despite a high level of participants-reported
usefulness and increases in both quantity and diversity of notifi-
cations using VizGroup in our lab study, instructors did not vali-
date/interact with real students. Future research can also investigate
instructors’ processes for validating AI-generated content, particu-
larly student-related information, in real-time classroom settings.

The discussion and submission data is only captured from one
session during one class, which means that the result may not be
generalizable to other contexts. Likewise, our evaluation of Viz-
Group used a dataset from a large programming lecture, limiting
the scope to large-scale data. We suspect that participants spent
less time on pattern identification and verifying notifications when
dealing with smaller datasets, as there was less information to pro-
cess. Future research can further explore the relationship between
data size and visualization complexity.

Additionally, there are some limitations to our system. First,
the choice of collaborative learning aspects used for generating
notifications was limited to Pass Rate, Activity Level, Code Issue,
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Conversation Topic, and Team Structure. Second, it is difficult to
scale the number of notifications to help users understand and
navigate the system. Moreover, the use of LLM could raise several
concerns regarding stability, transparency, and trust. Though our
approach adopted prior work’s methods [17, 57] that was examined
through metrics (e.g., F1, NDCG@K), further evaluation of LLMs’
capabilities in learning analytics is necessary. Lastly, our approach
to generating notification suggestions faces limitations in handling
context length when there are numerous messages or submissions.
This issue could be mitigated with context management techniques
in future work.

8 CONCLUSION
In this paper, we introduced VizGroup, a novel system that helps
programming instructors create notifications, such as alerts and
trackers, to better manage students’ in-class Peer Instruction ac-
tivity. It achieves this by leveraging LLMs to adapt time-sensitive
contextual information, such as historical data changes, and recom-
mends urgent notification units for instructors to monitor. Through
our comparison study, we found that with our notification rec-
ommendations, participants discovered patterns that they were
previously unaware of, and that the created notifications covered
a more diverse range of collaborative learning metrics that led to
changes in their creation strategies. Our work contributes new
understandings and design lessons to real-time, large-scale collabo-
rative learning analytics for domain experts who are novice users
of Visual Analytics. Collectively, this opens a new door for building
systems that support in-class collaborative learning at scale.
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A APPENDIX A: PROMPTS
Below are the prompts used to generate the suggested notifications.

A.1 Rank Groups by Issue Seriousness
System Prompt:
You are an Instructor tasked with identifying struggling
groups with potential performance/communication issues
and ranking them based on the seriousness of their
issues from the given JSON data below about student
groups’ recent activities around solving the programming
problem.

The output format is in JSON type:

Programming Problem:Write a function called under100 that
accepts a list of integers and returns the number of values in the
list that are less than 100.

Task:
(1) Analyze each group’s submission history, message history,

and current status and identify the issues the group has. For
instance, issues can be: "no active conversation", "insufficient
submission attempts", "keep discussing a problem but no
increase in pass rate", "members were asking for help but
did not receive any from teammates", or "the main content
of the conversation is not related to class", etc.

(2) Rank groups based on the seriousness of their issues based
on the content of issues and groups’ current performance
(pass rate and activity level). For every group, you also need
to record the aspect that you think the group has the most
serious trouble with from the following list: ["pass rate",
"amount of related messages in the conversation ", "topic
of conversation", "member’s participation in discussion"].
At last, summarize the issues you identified in [Task 1] in
one short sentence. (Make sure all groups in the input are
included in the output)

Input Format (JSON): A collection containing group objects (the
key of the object is group’s id). For each group, there are several
components:
-currentStatus: [object] containing information about

group's current status, including:
-groupPassRate: [numeric] group's average passrate
-teamActivity: [numeric] group's activity level
-membersParticipatedNum: [numeric] number of members

participated in the discussion
-topic: [string]: the summarized topic of the group discussion

-teamMembers: [Array] a list containing members' ID

-submissionHistory: [Array] a list of code submission records
from members of the group, each record containing:
-time: [numeric] time the submission was made (second)
-student_id: [string] the id of student who made the
submission
-results: [boolean] whether the code submission has passed
the test

-errorType: [string] type of the error of the code
submission
-errorMessage: [string] error message of the code
submission
-groupPassRate: [numeric] group's average passrate after
this submission

-messageHistory: [Array] a list of message records in the
group, each containing:

-time: [numeric] time the message was sent (second)
-message: [string] the content of the message
-sender_id: [string] the id of the student who sent the
message
-senderActivityLevel: [numeric] the student's activity
level at that time
-senderPassRate: [numeric] the pass rate of the sender
when the message was sent
-activity: [string] the category of this message
-topic: [string] the summarized topic of the group

discussion when the message was sent
-currentActivityLevel: [numeric] group's team activity
level at that time
-currentPassRate: [numeric] group's pass rate at that time

Input Example (JSON):

{"groupHistory":[
"qfNSCzEM1adKuYg8fS6s": {

"currentStatus": {
"groupPassRate": 33.333333333333336,
"teamActivity": 0,
"membersParticipatedNum": 0,
"topic": "No Conversation"

},
"teamMembers": [

"kcufXPSXQdUrxgHMv5lh",
"RLF72ACbWtDW1b0DzQ15",
"Yvodndj3W2Ig8EdcymB6"

],
"submissionHistory": [

{
"time": 68,

"student_id": "kcufXPSXQdUrxgHMv5lh",
"result": "not pass",
"errorType": "TypeError",

"errorMessage": "'int' object is not
subscriptable",

"groupPassRate": 33.333333333333336
},
{

"time": 99,
"student_id": "kcufXPSXQdUrxgHMv5lh",

"result": "not pass",
"errorType": "SyntaxError",

"errorMessage": "invalid syntax",
"groupPassRate": 33.333333333333336
}
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],
"messageHistory": []

},
"rDJkBCxbE5NAdFSlWApx": {

"currentStatus": {
"groupPassRate": 33.333333333333336,
"teamActivity": 3.6666666666666665,
"membersParticipatedNum": 2,
"topic": "Correcting Function
Implementation for Counting"

},
"teamMembers": [

"rMInc3JASsCmwXFN6ZKH",
"VN8tUFi6ZCcXye9S2Nxw",
"oAKti7KYiXSKIanUBONs"

],
"submissionHistory": [],
"messageHistory": [

{
"time": 21,

"message": "where is a count used?",
"sender_id": "rMInc3JASsCmwXFN6ZKH",

"senderActivityLevel": 2,
"senderPassRate": 0,
"activity": "help-seeking",
"topic": "Correcting Function
Implementation for Counting",
"currentActivityLevel":
2.3333333333333335,

"currentPassRate": 33.333333333333336
},
{

"time": 27,
"message": "or what for I mean",

"sender_id": "rMInc3JASsCmwXFN6ZKH",
"senderActivityLevel": 3,
"senderPassRate": 0,
"activity": "help-seeking",
"topic": "Correcting Function
Implementation for Counting",
"currentActivityLevel":
2.6666666666666665,

"currentPassRate": 33.333333333333336
},
{

"time": 78,
"message": "it initializes your

count value so the code knows where
to start",

"sender_id": "oAKti7KYiXSKIanUBONs",
"senderActivityLevel": 5,
"senderPassRate": 100,
"activity": "help-giving",
"topic": "Correcting Function
Implementation for Counting",
"currentActivityLevel": 3,

"currentPassRate": 33.333333333333336

},
{

"time": 115,
"message": "wait so is it asking for
a list of the numbers or the amount

of numbers that are below 100",
"sender_id": "rMInc3JASsCmwXFN6ZKH",

"senderActivityLevel": 4,
"senderPassRate": 0,
"activity": "help-seeking",
"topic": "Correcting Function
Implementation for Counting",
"currentActivityLevel":
3.3333333333333335,

"currentPassRate": 33.333333333333336
}

]
},

]}

Output Format (valid JSON):A list of ranked group objects (Make
sure to include all groups in the input), each containing:
- rank: The rank of this group based on the seriousness of
its issues
- id: [string] The id of this group
- aspect: [string] The aspect that you think the group has
the most serious trouble with
- issue: [string] A short-sentence summary of the group's
issues identified in [Task 1].

Output Example (valid JSON):
{"rankedGroupList":[

{
"rank": 1,
"id": "qfNSCzEM1adKuYg8fS6s",
"aspect": "amount of related messages in the
conversation",

"issue": "No active conversation despite submission
attempts."

},
{

"rank": 2,
"id": "rDJkBCxbE5NAdFSlWApx",

"aspect": "member's participation in discussion",
"issue": "Members were asking for help but the
conversation lacks depth in problem-solving."

}
]
}

A.2 Rank Students by Issue Seriousness
SystemPrompt: You are an Instructor tasked with identifying
struggling students with potential performance/communication
issues and ranking them based on the seriousness of
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their issues from the given JSON data below about
students’ recent activities around solving the programming
problem.

The output format is in JSON type:

Programming Problem:Write a function called under100 that
accepts a list of integers and returns the number of values in the
list that are less than 100.

Task:
(1) 1. Analyze each student’s submission history, message his-

tory, and current status and identify the issues the group
has. For instance, issues can be: "low pass rate", "insufficient
discussion with group members", "insufficient submission at-
tempts", "keep having the same code issue for student’s code
submissions ", "student was asking for help but no increase
in pass rate", or "the main content of the student’s messages
is not related to class", etc.

(2) Rank students in descending order based on the seriousness
(an issue with high seriousness may require you to send
a TA to support, while an issue with low seriousness can
simply be handled by the student who has that issue) of their
issues based on the content of issues and students’ current
performance (pass rate and activity level). For every student,
you also need to record the aspect that you think the student
has the most serious trouble with from the following list:
["pass rate", "amount of related messages in the conversation
", "topic of conversation", "code issue"]. At last, summarize the
issues you identified in [Task 1] in one short sentence. (Make
sure all students in the input are included in the output)

Input Format (JSON): A collection containing student objects (the
key of the object is student’s id). For each student, there are several
components:
-currentStatus: [object] containing information of student's
current status, including:

-passRate: [numeric] student's passrate
-teamActivity: [numeric] student's activity level
-topic: [string]: the summarized topic of the group
discussion

-submissionHistory: [Array] a list of code submission
records of the student, each record containing:
-time: [numeric] time the submission was made (second)
-passRate: [numeric] pass rate of the student's code
submission
-errorType: [string] type of the error of the code
submission
-errorMessage: [string] error message of the code
submission

-messageHistory: [Array] a list of message records of the
student, each containing:

-time: [numeric] time the message was sent (second)
-message: [string] the content of the message
-activity: [string] the category of this message (6
categories in total: ["help-giving", "help-seeking",

"exchanging information and feedback", "mutual
encouragement and challenging", "joint reflection on
progress and process", "Not Class Related"])
-currentTopic: [string] the summarized topic of the
student's group discussion when the message was sent
-currentActivityLevel: [numeric] student's team activity
level at that time
-currentPassRate: [numeric] student's pass rate at that
time

Input Example (JSON):

{"studentHistory":{
"0gL8b8z4viC8SXQiQi6x": {

"currentStatus": {
"passRate": 0,
"teamActivity": 1.3,
"topic": "Repeated Greetings and Minimal
Progress"

},
"submissionHistory": [],
"messageHistory": [

{
"time": 71,
"message": "wassup",
"activity": "not related to the class",
"currentTopic": "No Conversation",
"currentActivityLevel": 0,
"currentPassRate": 0

},
{

"time": 90,
"message": "same ",
"activity": "help-seeking",

"currentTopic": "Repeated Greetings and
Minimal Progress",
"currentActivityLevel": 0.3,
"currentPassRate": 0

}
]

},
"DrMqavekheeqmxbSCSeg": {

"currentStatus": {
"passRate": 25,
"teamActivity": 0.3,
"topic": "Repeated Greetings and Minimal
Progress"

},
"submissionHistory": [

{
"time": 59,
"passRate": 25,
"errorType": "Logical Error",
"errorMessage": ""

},
{

"time": 82,
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"passRate": 25,
"errorType": "Logical Error",
"errorMessage": ""

},
{

"time": 103,
"passRate": 25,
"errorType": "Logical Error",
"errorMessage": ""

},
{

"time": 113,
"passRate": 25,
"errorType": "Logical Error",
"errorMessage": ""

}
],
"messageHistory": [

{
"time": 63,
"message": "hi",
"activity": "not related to the class",
"currentTopic": "No Conversation",
"currentActivityLevel": 0,
"currentPassRate": 25

}
]

}
}

}

Output Format (valid JSON): A list of descendingly ranked stu-
dent objects (Make sure to include all students in the input), each
containing:
- rank: The rank of this student based on the seriousness of
his/her issues (an issue with high seriousness may require
you to send a TA to support, while an issue with low
seriousness can simply be handled by the student who has
that issue)
-id: The id of this student (make sure the id appears in the
input)
-aspect: The aspect that you think the student has the most
serious trouble with from the following list: ["pass rate",
"amount of related messages in the conversation ", "topic of
conversation", "code issue"]
-issue: [string] A short-sentence summary of the group's
issues identified in [Task 1].

Output Example (valid JSON):
{"rankedStudentList":[

{
"rank": 1,
"id": "DrMqavekheeqmxbSCSeg",
"aspect": "code issue",
"issue": "Repeated logical errors in code

submissions and lack of progress despite consistent

pass rate."
},
{

"rank": 2,
"id": "0gL8b8z4viC8SXQiQi6x",
"aspect": "passrate",

"issue": "No conversation with group members and
minimal progress despite seeking help."

}
]
}

A.3 Extracting Group Code Issues:
System Prompt: You are a programming Instructor tasked
with summarizing student groups’ common performance/
communication issues from the given JSON data below
about student groups’ issues while solving the programming
problem.

Programming Problem: Write a function called under100 that
accepts a list of integers and returns the number of values in the
list that are less than 100.

Task:
(1) Summarize the common issues based on issues and aspects

from the input in one short sentence.
(2) In the summarized issue description you have in [Task 1],

identify which of the following aspects was described.

Input Format (JSON): A list of issue objects containing:
-issue: [string] content of
performance/communication issues groups have
while working on the programming problem.
-aspect: [string] The aspect that the group has
the most serious trouble with. ( List of
aspects: ["pass rate", "amount of related
messages in the conversation ", "topic of
conversation", "member's participation in
discussion"])

Input Example (JSON):
{"groupIssueList":[
{

"aspect": "pass rate",
"issue": "Lowest pass rate with
multiple error types and no
conversation."

},
{

"aspect": "pass rate",
"issue": "Very low pass rate and
no active conversation."

},
{

"aspect": "pass rate",
"issue": "Low pass rate with
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minimal conversation and
participation."

},
{

"aspect": "amount of related
messages in the conversation",
"issue": "No active conversation
despite some submission
attempts."

},
{

"aspect": "amount of related
messages in the conversation",
"issue": "No conversation
despite submission attempts."

},
]

}

Output Format (valid JSON):
-issueSummary: [string] The short-sentence
summary of common issues in the input issue
reflecting the common aspect of issues.
-aspectList: [array] each containing identified
aspects in the issueSummary. Candidate aspects:
["pass rate", "amount of related messages in the
conversation ", "topic of conversation",
"member's participation in discussion"]

Output Example (valid JSON):
{“summary”:{

"issueSummary": "Low pass rates paired with
inadequate or no conversation",
"aspectList": ["pass rate", "amount of related
messages in the conversation"]

}
}

A.4 Extracting Individual Code Issues:
System Prompt: You are a programming Instructor tasked
with summarizing student groups’ common performance/
communication issues from the given JSON data below
about student groups’ issues while solving the programming
problem.

Programming Problem: Write a function called under100 that
accepts a list of integers and returns the number of values in the
list that are less than 100.

Task:
(1) Summarize the common issues based on issues and aspects

from the input in one short sentence.
(2) In the summarized issue description you have in [Task 1],

identify which of the following aspects was described.

Input Format (JSON): A list of issue objects containing:

A list of issue objects containing:
-issue: [string] content of
performance/communication issues
students have while working on the
programming problem.
-aspect: [string] The aspect that the
student has the most serious trouble
with. ( List of aspects: ["pass rate",
"amount of related messages in the
conversation ", "topic of
conversation", "code issue"])

Input Example (JSON):
{"studentIssueList":[
{

"aspect": "code issue",
"issue": "Repeated
TypeError issues and
seeking help without
improvement."

},
{

"aspect": "amount of
related messages in
the conversation",
"issue": "Repeated
Logical Errors and not
related messages
despite seeking help."

},
{

"aspect": "pass rate",
"issue": "Struggling
with final test cases
and actively seeking
help."

},
{

"aspect": "pass rate",

"issue": "Improved
pass rate through
submissions but still
seeking help."

},
{

"aspect": "code issue",
"issue": "Consistent
Logical Errors in
submissions."

},
]

}

Output Format (valid JSON):
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-issueSummary: [string] The short-
sentence summary of common issues in
the input issue reflecting the common
aspect of issues.
-aspectList: [array] each containing
identified aspects in the
issueSummary. Candidate aspects:["pass
rate", "amount of related messages in
the conversation ", "topic of
conversation", "code issue"]

Output Example (valid JSON):
{

"summary": {
"issueSummary": "Issues with code
errors and pass rate while

struggling with efficient
communication.",
"aspectList": ["code issue", "pass
rate", "amount of related messages
in the conversation"]

}
}

B APPENDIX B: FORMATIVE STUDY TASKS
• Task 1: Identify groups with specific patterns regarding progress
in solving the exercise and participating in group discussion,

• Task 2: Identify students whowere seeking help and had unsolved
issues,

• Task 3: Track and understand multiple groups’ dynamics in a
real-time setting,

• Task 4: Understand groups’ common issues.
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