
Mocking-up Desired UI Behaviors from UI
Element-Based Recording

Yan Chen
yanchenm@umich.edu ‖ University of Michigan, Ann Arbor

I. INTRODUCTION

Software developers often ask for support from other de-
velopers, but effective communication about programming
problems can be challenging. In the context of user interface
(UI) development, effective communication about interactive
behaviors of a UI is particularly difficult as it often requires
a visual demonstration of the UI behaviors as supporting
context. My motivational study found that our participants can
always correctly understand a request when it includes video
demos of the problem UI behavior and desired UI behavior.
I summarized that an ideal request regarding a UI interactive
behavior problem should include interrelated natural language
description, relevant code, and demonstrations of non-desired
and desired UI behaviors. I observed that developers often
provide only the demonstration of not desired UI behavior and
then describing the desired behavior on top of it. Unable to
provide desired UI behaviors makes communication about UI
behavior ineffective, and I argue this is a limitation of existing
techniques. In this work, I would like to propose a solution to
address it.

Existing tools, such as online discussion forums, allow
developers to take multiple screenshots or insert examples via
external links (e.g., jsFiddle.com) to provide visual context.
However, capturing these behaviors often requires a sequence
of user inputs which can be difficult to express in a static and
linear form (e.g., text or screenshots) that is easy to under-
stand. Prior work has argued that online discussion forums
should be domain-specifically designed for more effectively
communication [1]. Video recording these behaviors could
be a solution, but requesters might miss necessary contextual
information in their description. For example, our preliminary
study found that when describing a desired behavior for one
UI element, participants often forgot to provide the constraints
for how other UI elements’ should behave. Video recordings
could support better communication of ideas with appropriate
visual context, but the content in videos (e.g., UI elements)
are not reusable.

II. MOTIVATIONAL STUDIES

To find more evidence of this problem, I conducted an in-lab
exploratory study with seven undergrads from my university.
Each session lasts for an hour. All of them had at least
one year of experience developing interactive UIs and had
completed a team project in their UI development class. I

Fig. 1. CoCapture user interface. On the left is the recorded demonstration
of non-desired UI behaviors. On the right is a list of DOM elements that are
recorded independently. As each element is recorded as its own demonstration,
developers can edit their properties, like speed, or location, independently, and
remix the elements to reconfigure the desired UI behaviors.

asked three of them to act as a requester and make requests
about a set of common UI behavior problems found on a
web UI course (UMich EECS493) using a commercial tool,
Scrimba [2]. We used Scrimba as it captures users’ keystroke
level activities and cursor movement on its editor, which
provides more information in the recording. Participants were
provided code, incorrect output, and the desired output. I
asked the remaining four participants to act as helpers, to
comprehend these requests and describe what they understood
about the request. I then showed them the problems that
were presented to the requesters and ask them to evaluate the
requests by comparing their understanding to the ground-truth.
In summary, I found that

• helpers can correctly understand all the requests when
both a natural language description and video demos of
incorrect and desired UI behaivor outputs were given,

• without being able to record the desired behaviors, re-
questers would often forget to describe some information
in the requests,

• without videos of the desired behaviors, helpers would
inaccurately understand the requests.

Based on these findings, I am proposing a new system to
make it easier to generate desired UI behaviors. One idea that978-1-7281-0810-0/19/$31.00 ©2019 IEEE

I have developed is to enable developers to capture a UI-
element-based (UIEB) recording of their UI interactive behav-
iors. Unlike a video recording, UIEB captures DOM object
behaviors at the UI element level, which allows requesters
to edit UI elements at any time-frame in the recording. By
manipulating and remixing elements, requesters can mock-up
their desired behaviors from from the recording.

To illustrate the potential user interactions I envision, con-
sider the case of Kyle, an online game developer working
on a blasting game project using CoCapture, the proposed
system sketched in Fig. 1. On the left of Fig. 1, Kyle records
a recording of non-ideal UI behaviors using CoCapture, where
the shield (blue bubble) is supposed to overlay on top of
the ship to protect it, but appears in the wrong position. On
the right of Fig. 1, CoCapture shows a list of UI elements
that the requester wants to manipulate, which they select or
upload. After recording, Kyle edits the UI elements’s from
the recording, such as positions, play speed, or size, to mock-
up the desired behaviors. For example, in Fig. 1 Kyle pauses
the recording at the point where the incorrect behavior starts,
and he can now directly drag the shield object to overlay it
on top of the ship object. To propagate this overlay behavior,
CoCapture allows the requester to add an object constraint
between the shield and the ship and make them share the
same trajectory within any range of the video.

III. COMMUNICATION ABOUT CODE

To make software development more effective, I have
looked at the challenges and needs that developers encounter
during programming support [3]. Through multiple motiva-
tional studies, I found strong evidence for a variety of com-
munication challenges with current technologies, such as lack
of code context for mutual understanding. Driven by the design
implications I drew from these studies, I created Codeon [4],
a collaborative programming support tool that enables more
effective programming task hand-off between developers and
remote helpers with multimodal input interaction techniques.
When designing Codeon, one goal was to make commu-
nication between requesters and helpers about code syntax
easier. For example, Codeon supports voice requests, and the
request audio recording is synchronized with the developer’s
interactions within the editor (e.g., highlighting, scrolling, file
switching) and can be replayed in the helpers interface. The
multimedia request jointly embodies the dynamics of voice
signals and the visual content references, providing a rich,
natural context for communication. While Codeon is effective
for communication about code, it does not support commu-
nication about program output, like user interface behaviors.
The dynamic behavior of modern-day UIs introduces new
challenges in communication when coupled with code syntax
and natural language, which require further understanding.

IV. COMMUNICATION ABOUT COMPLEX TASKS

Other than Codeon, much prior work has also studied how
to better capture context when communicating about complex
tasks. Systems like Apparition [5] and SketchExpress [6]

enable UI prototype designers to easily hand-off their UI
and animation requirements to crowd workers using natural
language, hand-sketches, and demonstration. However, they
require users to create prototypes from scratch. CoCapture, in-
stead aims to enable requesters to easily mock-up their desired
behaviors by editing elements from the captured recording.

V. FUTURE WORK

As I continue to explore the design space of user interac-
tions for manipulating and remixing elements in a given UI-
element-based recording, there are several questions I plan
to answer: What would requesters want to capture? What
would requesters want to edit? Does it help to capture element
transforms as well? Does it help to show the difference before
and after editing? What element properties do requesters want
to manipulate? How can we support adding new elements to
the recording? How could requesters add their behaviors and
synchronize with the recording? If inserting UI elements is
possible, how would requesters want to specify the behaviors
of the new elements in recording? I will first come up with
some variations of the features I described above, and then
evaluate their usability.

After analyzing the collected feedback, I plan to develop a
working prototype that provides all the critical functionality,
including capturing UI behaviors as a recording at the UI-
element level and manipulating elements in the recording.
After pilot testing, I plan to conduct a system evaluation study
in which participants will use either CoCapture or existing
tools (e.g., scrimba.com) to make and read requests. I will
collect qualitative data such as their opinions regarding the
ease of use, and quantitative data such as the time they spend
on creating and understanding the requests, or patterns for
effectively creating desired behaviors for a given codebase
state (feature non-existent vs feature in-progress vs feature
broken). I am excited about developing this UI-element-based
recording technique to support people in better expressing
desired interactive UI behaviors based on existing recording.

REFERENCES

[1] J. Zhu, J. Warner, M. Gordon, J. White, R. Zanelatto, and P. J. Guo,
“Toward a domain-specific visual discussion forum for learning computer
programming: An empirical study of a popular mooc forum,” in 2015
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2015, pp. 101–109.

[2] Scrimba. https://scrimba.com/, 2019.
[3] Y. Chen, S. Oney, and W. S. Lasecki, “Towards providing on-demand

expert support for software developers,” in Proceedings of the 2016 CHI
conference on human factors in computing systems. ACM, 2016, pp.
3192–3203.

[4] Y. Chen, S. W. Lee, Y. Xie, Y. Yang, W. S. Lasecki, and S. Oney, “Codeon:
On-demand software development assistance,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. ACM, 2017,
pp. 6220–6231.

[5] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced user interfaces that come to life as
you sketch them,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM, 2015, pp. 1925–1934.

[6] S. W. Lee, Y. Zhang, I. Wong, Y. Yang, S. D. O’Keefe, and W. S. Lasecki,
“Sketchexpress: Remixing animations for more effective crowd-powered
prototyping of interactive interfaces,” in Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. ACM,
2017, pp. 817–828.

